Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Digital Twins and Testbeds for Supporting AI Research with Autonomous Vehicle Networks (2404.00954v2)

Published 1 Apr 2024 in eess.SP and cs.NI

Abstract: Digital twins (DTs), which are virtual environments that simulate, predict, and optimize the performance of their physical counterparts, hold great promise in revolutionizing next-generation wireless networks. While DTs have been extensively studied for wireless networks, their use in conjunction with autonomous vehicles featuring programmable mobility remains relatively under-explored. In this paper, we study DTs used as a development environment to design, deploy, and test AI techniques that utilize real-world (RW) observations, e.g. radio key performance indicators, for vehicle trajectory and network optimization decisions in autonomous vehicle networks (AVN). We first compare and contrast the use of simulation, digital twin (software in the loop (SITL)), sandbox (hardware-in-the-loop (HITL)), and physical testbed (PT) environments for their suitability in developing and testing AI algorithms for AVNs. We then review various representative use cases of DTs for AVN scenarios. Finally, we provide an example from the NSF AERPAW platform where a DT is used to develop and test AI-aided solutions for autonomous unmanned aerial vehicles for localizing a signal source based solely on link quality measurements. Our results in the physical testbed show that SITL DTs, when supplemented with data from RW measurements and simulations, can serve as an ideal environment for developing and testing innovative AI solutions for AVNs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. Y. Dai, K. Zhang, S. Maharjan, and Y. Zhang, “Deep reinforcement learning for stochastic computation offloading in digital twin networks,” IEEE Trans. Industrial Informatics, vol. 17, no. 7, pp. 4968–4977, 2021.
  2. L. U. Khan, W. Saad, D. Niyato, Z. Han, and C. S. Hong, “Digital-twin-enabled 6G: Vision, architectural trends, and future directions,” IEEE Communications Magazine, vol. 60, no. 1, pp. 74–80, 2022.
  3. ITU-T, “Digital twin network – Requirements and architecture,” 2 2022, recommendation ITU-T Y.3090.
  4. D. Jones, C. Snider, A. Nassehi, J. Yon, and B. Hicks, “Characterising the digital twin: A systematic literature review,” CIRP Journal of Manufacturing Science and Technology, vol. 29, May 2020.
  5. A. Masaracchia, V. Sharma, B. Canberk, O. A. Dobre, and T. Q. Duong, “Digital twin for 6g: Taxonomy, research challenges, and the road ahead,” IEEE Open J. Commun. Society, pp. 2137–2150, 2022.
  6. Y. Wang, Z. Hu, X. Wen, Z. Lu, and J. Miao, “Minimizing data collection time with collaborative UAVs in wireless sensor networks,” IEEE Access, vol. 8, pp. 98 659–98 669, 2020.
  7. X. Liu, Y. Liu, Y. Chen, and L. Hanzo, “Trajectory design and power control for multi-UAV assisted wireless networks: A machine learning approach,” IEEE Trans. Veh. Technol., vol. 68, no. 8, 2019.
  8. F. Koohifar, I. Guvenc, and M. L. Sichitiu, “Autonomous tracking of intermittent RF source using a UAV swarm,” IEEE Access, vol. 6, pp. 15 884–15 897, 2018.
  9. V. P. Chellapandi, L. Yuan, C. G. Brinton, S. H. Żak, and Z. Wang, “Federated learning for connected and automated vehicles: A survey of existing approaches and challenges,” IEEE Trans. Intelligent Veh., vol. 9, no. 1, pp. 119–137, 2024.
  10. A. Şahin and R. Yang, “A survey on over-the-air computation,” IEEE Commun. Surveys & Tutorials, vol. 25, no. 3, pp. 1877–1908, 2023.
  11. A. Alkhateeb, S. Jiang, and G. Charan, “Real-time digital twins: Vision and research directions for 6G and beyond,” IEEE Commun. Mag., vol. 61, no. 11, pp. 128–134, 2023.
  12. AERPAW, “Aerial Experimentation and Research Platform for Advanced Wireless,” 2024. [Online]. Available: https://aerpaw.org/
  13. S. J. Maeng, H. Kwon, O. Ozdemir, and I. Guvenc, “Impact of 3-D antenna radiation pattern in UAV air-to-ground path loss modeling and RSRP-based localization in rural area,” IEEE Open J. Antennas Propag., vol. 4, pp. 1029–1043, 2023.
  14. F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson, and P.-J. Nordlund, “Particle filters for positioning, navigation, and tracking,” IEEE Trans. Sig. Proc., vol. 50, pp. 425–437, 2002.
  15. K. S. Kim, S. Lee, and K. Huang, “A scalable deep neural network architecture for multi-building and multi-floor indoor localization based on Wi-Fi fingerprinting,” Big Data Analytics, vol. 3, pp. 1–17, 2018.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (10)
  1. Anıl Gürses (2 papers)
  2. Gautham Reddy (2 papers)
  3. Saad Masrur (6 papers)
  4. Mihail L. Sichitiu (12 papers)
  5. Ahmed Alkhateeb (122 papers)
  6. Rudra Dutta (8 papers)
  7. Özgür Özdemir (5 papers)
  8. İsmail Güvenç (21 papers)
  9. Alphan Şahin (8 papers)
  10. Magreth Mushi (6 papers)