Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Interaction-driven breakdown of Aharonov--Bohm caging in flat-band Rydberg lattices (2404.00737v1)

Published 31 Mar 2024 in cond-mat.quant-gas, physics.atom-ph, and quant-ph

Abstract: Flat bands play a central role in hosting emergent states of matter in many condensed matter systems, from the nascent insulating states of twisted bilayer graphene to the fractionalized excitations found in frustrated magnets and quantum Hall materials. Here, we report on the experimental realization of highly tunable flat-band models populated by strongly interacting Rydberg atoms. Using the approach of synthetic dimensions, we engineer a flat-band rhombic lattice with twisted boundaries, and through nonequilibrium dynamics we explore the control of Aharonov--Bohm (AB) caging via a tunable $U(1)$ gauge field. Through microscopic measurements of Rydberg pairs, we explore the interaction-driven breakdown of AB caging in the limit of strong dipolar interactions that mix the lattice bands. In the limit of weak interactions, where caging remains intact, we observe an effective magnetism that arises due to the interaction-driven mixing of degenerate flat-band states. These observations of strongly correlated flat-band dynamics open the door to explorations of new emergent phenomena in synthetic quantum materials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. L. Balents, Nature 464, 199 (2010).
  2. P. Coleman, “Heavy fermions: Electrons at the edge of magnetism,” in Handbook of Magnetism and Advanced Magnetic Materials (John Wiley & Sons, Ltd, 2007).
  3. H. Tasaki, Phys. Rev. Lett. 69, 1608 (1992).
  4. A. Mielke, Journal of Physics A: Mathematical and General 24, 3311 (1991).
  5. S. Peotta and P. Törmä, Nature Communications 6, 8944 (2015).
  6. J. K. Jain, Phys. Rev. B 41, 7653 (1990).
  7. D. Leykam and S. Flach, APL Photonics 3, 070901 (2018).
  8. S. Longhi, Opt. Lett. 39, 5892 (2014).
  9. K. R. A. Hazzard and B. Gadway, Physics Today 76, 62 (2023).
  10. See Supplementary Material for more experimental details and details on the theoretical formulation.
  11. T. Ozawa and H. M. Price, Nature Reviews Physics 1, 349 (2019).
  12. R. Khomeriki and S. Flach, Phys. Rev. Lett. 116, 245301 (2016).
  13. S. D. Huber and E. Altman, Phys. Rev. B 82, 184502 (2010).
  14. J. Sólyom and P. Pfeuty, Phys. Rev. B 24, 218 (1981).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com