Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Jacobi Sigma Models and Twisted Jacobi Structures (2404.00421v1)

Published 30 Mar 2024 in hep-th, math-ph, and math.MP

Abstract: Jacobi sigma models are two-dimensional topological non-linear field theories which are associated with Jacobi structures. The latter can be considered as a generalization of Poisson structures. After reviewing the main properties and peculiarities of these models, we focus on the twisted version in which a Wess-Zumino term is included. This modification allows for the target space to be a twisted Jacobi manifold. We discuss in particular the model on the sphere $S5$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. F. Bascone, F. Pezzella and P. Vitale, “Jacobi sigma models,” JHEP 03 (2021), 110 [arXiv:2007.12543 [hep-th]].
  2. A. Chatzistavrakidis and G. Šimunić, “Gauged sigma-models with nonclosed 3-form and twisted Jacobi structures,” JHEP 11 (2020), 173 [arXiv:2007.08951 [hep-th]].
  3. A. Kirillov, “Local Lie algebras,” Russian Math. Surveys, 31 (1976), 55-75.
  4. F. Bascone, F. Pezzella and P. Vitale, “Topological and Dynamical Aspects of Jacobi Sigma Models,” Symmetry 13 (2021) no.7, 1205 [arXiv:2105.09780 [hep-th]].
  5. I. V. Vancea, “Classical boundary field theory of Jacobi sigma models by Poissonization,” SciPost Phys. Proc. 4 (2021), 011 doi:10.21468/SciPostPhysProc.4.011 [arXiv:2012.02756 [hep-th]].
  6. P. Severa and A. Weinstein, “Poisson geometry with a 3 form background,” Prog. Theor. Phys. Suppl. 144 (2001), 145-154 [arXiv:math/0107133 [math.SG]].
  7. C. Klimcik and T. Strobl, “WZW - Poisson manifolds,” J. Geom. Phys. 43 (2002), 341-344 [arXiv:math/0104189 [math.SG]].
  8. J. M. Nunes da Costa and F. Petalidou, “Twisted Jacobi manifolds, twisted Dirac’ÄìJacobi structures and quasi-Jacobi bialgebroids,” J. Phys. A: Math. Gen. 39 (2006), 10449.
  9. E. -M. Cioroianu and C. Vizman, “Jacobi structures with background,” Int. J. Geom. Methods Mod. Phys. 17 (2020), 2050063.
  10. I. Vaisman, “A lecture on Jacobi manifolds”, Selected topics in Geom. and Math. Phys., 2002, 1 (2022), pp. 81-100 .
  11. C.-M. Marle, “On Jacobi manifolds and Jacobi bundles” In Symplectic Geometry, Groupoids, and Integrable Systems, Dazord P., Weinstein A. (eds), Mathematical Sciences Research Institute Publications, 20 - Springer, New York, NY, 1991.
  12. P. Dazord, A. Lichnerovicz, C. -M. Marle “Structure locale des variétés de Jacobi”, J. Math. pures et appl. 70 (1991), 101-152
  13. A. Lichnerovicz, “Les variétés de Jacobi et leurs algèbres de Lie associées” J. Math. pures et appl. 57 (1978), 453-488
  14. J. M. Nunes da Costa and F. Petalidou, “Characteristic foliation of twisted Jacobi manifolds”, [arXiv:math/0612145 [math.DG]]
  15. B. Cappelletti-Montano, A. De Nicola and I. Yudin, “A survey on cosymplectic geometry,” Rev. Math. Phys. 25 (2013) no.10, 1343002 [arXiv:1305.3704 [math.DG]].
  16. M. de León and M. Lainz, “A review on contact Hamiltonian and Lagrangian systems,” [arXiv:2011.05579 [math-ph]].
  17. B. Ateşli, O. Esen, M. de León and C. Sardón, “On locally conformally cosymplectic Hamiltonian dynamics and Hamilton–Jacobi theory,” J. Phys. A 56 (2023) no.1, 015204 [arXiv:2205.13329 [math.DG]].
  18. S. Berceanu, “Hamiltonian systems on almost cosymplectic manifolds,” [arXiv:2201.01962].
  19. P. Libermann, “Sur quelques exemples de structures pfaffiennes et presque cosymplectiques,” Ann. Math. Pura Appl. 60 (1962), 153-172.
  20. M. de Léon, J. C. Marrero and E. Padrón, “On the geometric quantization of Jacobi manifolds,” J. Math. Phys., 38 (1997), 6185-6213.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.