2000 character limit reached
Jacobi Sigma Models and Twisted Jacobi Structures (2404.00421v1)
Published 30 Mar 2024 in hep-th, math-ph, and math.MP
Abstract: Jacobi sigma models are two-dimensional topological non-linear field theories which are associated with Jacobi structures. The latter can be considered as a generalization of Poisson structures. After reviewing the main properties and peculiarities of these models, we focus on the twisted version in which a Wess-Zumino term is included. This modification allows for the target space to be a twisted Jacobi manifold. We discuss in particular the model on the sphere $S5$.
- F. Bascone, F. Pezzella and P. Vitale, “Jacobi sigma models,” JHEP 03 (2021), 110 [arXiv:2007.12543 [hep-th]].
- A. Chatzistavrakidis and G. Šimunić, “Gauged sigma-models with nonclosed 3-form and twisted Jacobi structures,” JHEP 11 (2020), 173 [arXiv:2007.08951 [hep-th]].
- A. Kirillov, “Local Lie algebras,” Russian Math. Surveys, 31 (1976), 55-75.
- F. Bascone, F. Pezzella and P. Vitale, “Topological and Dynamical Aspects of Jacobi Sigma Models,” Symmetry 13 (2021) no.7, 1205 [arXiv:2105.09780 [hep-th]].
- I. V. Vancea, “Classical boundary field theory of Jacobi sigma models by Poissonization,” SciPost Phys. Proc. 4 (2021), 011 doi:10.21468/SciPostPhysProc.4.011 [arXiv:2012.02756 [hep-th]].
- P. Severa and A. Weinstein, “Poisson geometry with a 3 form background,” Prog. Theor. Phys. Suppl. 144 (2001), 145-154 [arXiv:math/0107133 [math.SG]].
- C. Klimcik and T. Strobl, “WZW - Poisson manifolds,” J. Geom. Phys. 43 (2002), 341-344 [arXiv:math/0104189 [math.SG]].
- J. M. Nunes da Costa and F. Petalidou, “Twisted Jacobi manifolds, twisted Dirac’ÄìJacobi structures and quasi-Jacobi bialgebroids,” J. Phys. A: Math. Gen. 39 (2006), 10449.
- E. -M. Cioroianu and C. Vizman, “Jacobi structures with background,” Int. J. Geom. Methods Mod. Phys. 17 (2020), 2050063.
- I. Vaisman, “A lecture on Jacobi manifolds”, Selected topics in Geom. and Math. Phys., 2002, 1 (2022), pp. 81-100 .
- C.-M. Marle, “On Jacobi manifolds and Jacobi bundles” In Symplectic Geometry, Groupoids, and Integrable Systems, Dazord P., Weinstein A. (eds), Mathematical Sciences Research Institute Publications, 20 - Springer, New York, NY, 1991.
- P. Dazord, A. Lichnerovicz, C. -M. Marle “Structure locale des variétés de Jacobi”, J. Math. pures et appl. 70 (1991), 101-152
- A. Lichnerovicz, “Les variétés de Jacobi et leurs algèbres de Lie associées” J. Math. pures et appl. 57 (1978), 453-488
- J. M. Nunes da Costa and F. Petalidou, “Characteristic foliation of twisted Jacobi manifolds”, [arXiv:math/0612145 [math.DG]]
- B. Cappelletti-Montano, A. De Nicola and I. Yudin, “A survey on cosymplectic geometry,” Rev. Math. Phys. 25 (2013) no.10, 1343002 [arXiv:1305.3704 [math.DG]].
- M. de León and M. Lainz, “A review on contact Hamiltonian and Lagrangian systems,” [arXiv:2011.05579 [math-ph]].
- B. Ateşli, O. Esen, M. de León and C. Sardón, “On locally conformally cosymplectic Hamiltonian dynamics and Hamilton–Jacobi theory,” J. Phys. A 56 (2023) no.1, 015204 [arXiv:2205.13329 [math.DG]].
- S. Berceanu, “Hamiltonian systems on almost cosymplectic manifolds,” [arXiv:2201.01962].
- P. Libermann, “Sur quelques exemples de structures pfaffiennes et presque cosymplectiques,” Ann. Math. Pura Appl. 60 (1962), 153-172.
- M. de Léon, J. C. Marrero and E. Padrón, “On the geometric quantization of Jacobi manifolds,” J. Math. Phys., 38 (1997), 6185-6213.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.