Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bayesian inference of the dense matter equation of state built upon extended Skyrme interactions (2403.19325v3)

Published 28 Mar 2024 in nucl-th

Abstract: The non-relativistic model of nuclear matter with Brussels extended Skyrme interactions is employed in order to build, within a Bayesian approach, models for the dense matter equation of state (EOS). In addition to a minimal set of constraints on nuclear empirical parameters; the density behavior of the energy per particle in pure neutron matter (PNM); a lower limit on the maximum neutron star (NS) mass, we require that the Fermi velocity of neutrons ($v_{\mathrm{F;\,n}}$) in PNM and symmetric nuclear matter (SNM) with densities up to $0.8~\mathrm{fm}{-3}$ (arbitrary) does not exceed the speed of light. The latter condition is imposed in order to cure a deficiency present in many Skyrme interactions [Duan and Urban, Phys. Rev. C 108, 025813 (2023)]. We illustrate the importance of this constraint for the posterior distributions. Some of our models are subjected to constraints on the density dependence of neutron (nucleon) Landau effective mass in PNM (SNM), too. The impact of various sets of constraints on the behaviors of nuclear matter and NSs is discussed in detail. Systematic comparison with results previously obtained by employing Skyrme interactions is done for posteriors of both nuclear matter (NM) and NS parameters. Special attention is given to the model and constraints dependence of correlations among various quantities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. S. Typel et al. (CompOSE Core Team), CompOSE Reference Manual, Eur. Phys. J. A 58, 221 (2022).
  2. J. Antoniadis et al., A Massive Pulsar in a Compact Relativistic Binary, Science 340, 448 (2013).
  3. Z. Arzoumanian et al. (NANOGrav), The NANOGrav 11-year Data Set: High-precision timing of 45 Millisecond Pulsars, Astrophys. J., Suppl. Ser. 235, 37 (2018).
  4. H. T. Cromartie et al. (NANOGrav), Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar, Nat. Astron. 4, 72 (2020).
  5. E. Fonseca et al., Refined Mass and Geometric Measurements of the High-mass PSR J0740+++6620, Astrophys. J. Lett. 915, L12 (2021).
  6. B. P. Abbott et al. (The LIGO Scientific Collaboration and the Virgo Collaboration), Gw170817: Measurements of neutron star radii and equation of state, Phys. Rev. Lett. 121, 161101 (2018).
  7. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Properties of the binary neutron star merger gw170817, Phys. Rev. X 9, 011001 (2019).
  8. T. E. Riley et al., A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation, Astrophys. J. Lett. 887, L21 (2019).
  9. M. C. Miller et al., PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter, Astrophys. J. Lett. 887, L24 (2019).
  10. T. E. Riley et al., A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy, Astrophys. J. Lett. 918, L27 (2021).
  11. M. C. Miller et al., The Radius of PSR J0740+6620 from NICER and XMM-Newton Data, Astrophys. J. Lett. 918, L28 (2021a).
  12. S. Traversi, P. Char, and G. Pagliara, Bayesian inference of dense matter equation of state within relativistic mean field models using astrophysical measurements, Astrophys. J. 897, 165 (2020).
  13. J. Zhou, J. Xu, and P. Papakonstantinou, Bayesian inference of neutron-star observables based on effective nuclear interactions, Phys. Rev. C 107, 055803 (2023).
  14. M. V. Beznogov and A. R. Raduta, Bayesian inference of the dense matter equation of state built upon covariant density functionals, Phys. Rev. C 107, 045803 (2023).
  15. M. V. Beznogov and A. R. Raduta, Bayesian Survey of the Dense Matter Equation of State built upon Skyrme effective interactions, arXiv e-prints , arXiv:2308.15351 (2023).
  16. M. Duan and M. Urban, Energy and angle dependence of neutrino scattering rates in proto–neutron star and supernova matter within Skyrme RPA, Phys. Rev. C 108, 025813 (2023).
  17. N. Chamel, S. Goriely, and J. M. Pearson, Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. XI. Stabilizing neutron stars against a ferromagnetic collapse, Phys. Rev. C 80, 065804 (2009).
  18. J. W. Negele and D. Vautherin, Density-matrix expansion for an effective nuclear hamiltonian, Phys. Rev. C 5, 1472 (1972).
  19. C. Ducoin, P. Chomaz, and F. Gulminelli, Role of isospin in the nuclear liquid–gas phase transition, Nucl. Phys. A 771, 68 (2006).
  20. S. Goriely, N. Chamel, and J. M. Pearson, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient, Phys. Rev. C 88, 024308 (2013).
  21. S. Goriely, Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. XV: The spin–orbit coupling, Nucl. Phys. A 933, 68 (2015).
  22. J. Margueron, R. Hoffmann Casali, and F. Gulminelli, Equation of state for dense nucleonic matter from metamodeling. I. Foundational aspects, Phys. Rev. C 97, 025805 (2018).
  23. P. Haensel, J. L. Zdunik, and J. Dobaczewski, Composition and equation of state of cold catalyzed matter below neutron drip, Astron. Astrophys. 222, 353 (1989).
  24. J. Negele and D. Vautherin, Neutron star matter at sub-nuclear densities, Nucl. Phys. A 207, 298 (1973).
  25. M. C. Miller et al., The Radius of PSR J0740+6620 from NICER and XMM-Newton Data, Astrophys. J. Lett. 918, L28 (2021b).
  26. T. Hinderer, Tidal love numbers of neutron stars, Astrophys. J. 677, 1216 (2008).
  27. J. Goodman and J. Weare, Ensemble samplers with affine invariance, Comm. App. Math. and Comp. Sci. 5, 65 (2010).
  28. W. D. Vousden, W. M. Farr, and I. Mandel, Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations, Mon. Not. R. Astron. Soc. 455, 1919 (2016).
  29. J. Skilling, Nested sampling for general Bayesian computation, Bayesian Analysis 1, 833 (2006).
  30. J. Buchner, A statistical test for Nested Sampling algorithms, Stat. Comput. 26, 383 (2016).
  31. J. Buchner, Collaborative Nested Sampling: Big Data versus Complex Physical Models, Publ. Astron. Soc. Pac. 131, 108005 (2019).
  32. J. Buchner, UltraNest - a robust, general purpose Bayesian inference engine, J. Open Source Software 6, 3001 (2021).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.