Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fusion of one-dimensional gapped phases and their domain walls (2403.19068v1)

Published 28 Mar 2024 in cond-mat.str-el and quant-ph

Abstract: Finite depth quantum circuits provide an equivalence relation between gapped phases. Moreover, there can be nontrivial domain walls either within the same gapped phase or between different gapped phases, whose equivalence relations are given by finite depth quantum circuits in one lower dimension. In this paper, we use such unitary equivalence relations to study the fusion of one-dimensional gapped phases. In particular, we use finite depth circuits to fuse two gapped phases, local unitaries to fuse two domain walls, and a combination of both to fuse gapped phases with domain walls. This provides a concrete illustration of some simple aspects of the `higher-category' structure of gapped defects in a higher-dimensional trivial gapped bulk state.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. K. Roumpedakis, S. Seifnashri, and S.-H. Shao, Higher gauging and non-invertible condensation defects, Communications in Mathematical Physics 401, 3043 (2023).
  2. L. Bhardwaj and Y. Tachikawa, On finite symmetries and their gauging in two dimensions, Journal of High Energy Physics 2018, 189 (2018).
  3. L. Bhardwaj, S. Schäfer-Nameki, and A. Tiwari, Unifying constructions of non-invertible symmetries, SciPost Phys. 15, 122 (2023b).
  4. D. Aasen, R. S. K. Mong, and P. Fendley, Topological defects on the lattice: I. the ising model, Journal of Physics A: Mathematical and Theoretical 49, 354001 (2016).
  5. R. Thorngren and Y. Wang, Fusion category symmetry i: Anomaly in-flow and gapped phases (2019), arXiv:1912.02817 [hep-th] .
  6. T. Johnson-Freyd, On the classification of topological orders, Communications in Mathematical Physics 393, 989 (2022).
  7. W. Ji and X.-G. Wen, A unified view on symmetry, anomalous symmetry and non-invertible gravitational anomaly (2022), arXiv:2106.02069 [cond-mat.str-el] .
  8. L. Kong, Y. Tian, and Z.-H. Zhang, Defects in the 3-dimensional toric code model form a braided fusion 2-category, Journal of High Energy Physics 2020, 78 (2020b).
  9. L. Kong, X.-G. Wen, and H. Zheng, One dimensional gapped quantum phases and enriched fusion categories, Journal of High Energy Physics 2022, 22 (2022).
  10. A. Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics 321, 2 (2006), january Special Issue.
  11. X. Chen, Z.-C. Gu, and X.-G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev. B 83, 035107 (2011a).
  12. N. Schuch, D. Pérez-García, and I. Cirac, Classifying quantum phases using matrix product states and projected entangled pair states, Phys. Rev. B 84, 165139 (2011).
  13. L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B 83, 075103 (2011).
  14. Y. Huang and X. Chen, Quantum circuit complexity of one-dimensional topological phases, Phys. Rev. B 91, 195143 (2015).
  15. H. J. Briegel and R. Raussendorf, Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett. 86, 910 (2001).
  16. W. Son, L. Amico, and V. Vedral, Topological order in 1d cluster state protected by symmetry, Quantum Information Processing 11, 1961 (2012).
  17. A. Y. Kitaev, Unpaired majorana fermions in quantum wires, Physics-Uspekhi 44, 131 (2001).
  18. L. Kong, X.-G. Wen, and H. Zheng, Boundary-bulk relation for topological orders as the functor mapping higher categories to their centers (2015), arXiv:1502.01690 [cond-mat.str-el] .
  19. L. Kong and H. Zheng, Categories of quantum liquids i, Journal of High Energy Physics 2022, 70 (2022).
  20. X. Chen, Z.-X. Liu, and X.-G. Wen, Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations, Phys. Rev. B 84, 235141 (2011b).
  21. N. Schuch, I. Cirac, and D. Perez-Garcia, Peps as ground states: Degeneracy and topology, Ann. Phys. 325, 2153 (2010).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube