Strong-coupling approach to temperature dependence of competing orders of superconductivity: Possible time-reversal symmetry breaking and nontrivial topology (2403.18897v2)
Abstract: We use strong-coupling Eliashberg theory to study the competition of separate superconducting orders at low temperatures. Specifically, we study magnon-mediated superconductivity in a trilayer heterostructure with a thin normal metal between two antiferromagnetic insulators. Spin-triplet $p$-wave, spin-triplet $f$-wave, and spin-singlet $d$-wave superconducting gaps have been predicted to occur close to the critical temperature for the superconducting instability. The gap symmetry with the largest critical temperature depends on parameters in the model. We confirm that the same gap symmetries appear at any temperature below the critical temperature. Furthermore, we show that the temperature can affect the competition between the different superconducting orders. In addition, we consider time-reversal-symmetry-breaking, complex linear combinations of candidate pairings, such as chiral $p$-, $f$-, and $d$-wave gaps, as well as $p_x+if_y$-wave gaps. We find indications that some of these time-reversal-symmetry-breaking, nodeless gaps offer a greater condensation energy than the time-reversal symmetric gaps. This indicates that superconducting states with spontaneously broken time-reversal symmetry and nontrivial topology may be preferred in this system.
- M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
- G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).
- D. van Delft and P. Kes, Phys. Today 63, 38 (2010).
- P. W. Anderson, Phys. Rev. 130, 439 (1963).
- F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964).
- P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964).
- E. G. Maksimov, Phys.-Usp. 43, 965 (2000).
- J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
- P. Monthoux and D. Pines, Phys. Rev. B 47, 6069 (1993).
- D. J. Scalapino, J. Low Temp. Phys. 117, 179 (1999).
- T. Moriya and K. Ueda, Rep. Prog. Phys. 66, 1299 (2003).
- P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Prog. Phys. 74, 124508 (2011).
- G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).
- S. Wirth and F. Steglich, Nat. Rev. Mater. 1, 16051 (2016).
- N. Rohling, E. L. Fjærbu, and A. Brataas, Phys. Rev. B 97, 115401 (2018).
- E. L. Fjærbu, N. Rohling, and A. Brataas, Phys. Rev. B 100, 125432 (2019).
- E. Thingstad, E. Erlandsen, and A. Sudbø, Phys. Rev. B 104, 014508 (2021).
- C. Sun, K. Mæland, and A. Sudbø, Phys. Rev. B 108, 054520 (2023).
- K. Mæland and A. Sudbø, Phys. Rev. Lett. 130, 156002 (2023a).
- F. V. Boström and E. V. Boström, arXiv:2312.02655 (2023).
- M. Kargarian, D. K. Efimkin, and V. Galitski, Phys. Rev. Lett. 117, 076806 (2016).
- H. G. Hugdal and A. Sudbø, Phys. Rev. B 102, 125429 (2020).
- E. Erlandsen, A. Brataas, and A. Sudbø, Phys. Rev. B 101, 094503 (2020).
- C. Sun, H. Yang, and M. B. A. Jalil, Phys. Rev. B 105, 104407 (2022).
- J. Hutchinson and F. Marsiglio, J. Phys.: Condens. Matter 33, 065603 (2020).
- G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 (1960a), [Sov. Phys. JETP 11, 696 (1960)].
- G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 39, 1437 (1960b), [Sov. Phys. JETP 12, 1000 (1961)].
- J. P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).
- F. Marsiglio, Ann. Phys. 417, 168102 (2020).
- M. Sigrist, Physica B 280, 154 (2000).
- N. H. Aase, K. Mæland, and A. Sudbø, Phys. Rev. B 108, 214508 (2023).
- W. Huang, E. Taylor, and C. Kallin, Phys. Rev. B 90, 224519 (2014).
- Y. Tada, W. Nie, and M. Oshikawa, Phys. Rev. Lett. 114, 195301 (2015).
- G. E. Volovik, JETP Lett. 100, 742 (2015).
- S.-I. Suzuki and A. A. Golubov, Phys. Rev. B 108, 134501 (2023).
- A. M. Black-Schaffer and C. Honerkamp, J. Phys.: Condens. Matter 26, 423201 (2014).
- S. D. Lundemo and A. Sudbø, Phys. Rev. B 109, 184508 (2024).
- B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, NJ, 2013).
- M. Sato and Y. Ando, Rep. Prog. Phys. 80, 076501 (2017).
- M. Leijnse and K. Flensberg, Semicond. Sci. Technol. 27, 124003 (2012).
- K. Mæland and A. Sudbø, Phys. Rev. B 108, 214511 (2023b).
- H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179 (1977).
- F. Marsiglio, M. Schossmann, and J. P. Carbotte, Phys. Rev. B 37, 4965 (1988).
- A. Aperis, P. Maldonado, and P. M. Oppeneer, Phys. Rev. B 92, 054516 (2015).
- A. Aperis and P. M. Oppeneer, Phys. Rev. B 97, 060501 (2018).
- F. Schrodi, A. Aperis, and P. M. Oppeneer, Phys. Rev. Res. 2, 012066 (2020a).
- F. Schrodi, P. M. Oppeneer, and A. Aperis, Phys. Rev. B 102, 024503 (2020b).
- T. Senthil, J. B. Marston, and M. P. A. Fisher, Phys. Rev. B 60, 4245 (1999).
- M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. Lett. 85, 4940 (2000).
- A. M. Black-Schaffer, Phys. Rev. Lett. 109, 197001 (2012).
- P. Holmvall and A. M. Black-Schaffer, Phys. Rev. B 108, L100506 (2023).
- A. Y. Kitaev, Phys.-Usp. 44, 131 (2001).
- Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).
- M. Hell, M. Leijnse, and K. Flensberg, Phys. Rev. Lett. 118, 107701 (2017).
- O. Lesser, Y. Oreg, and A. Stern, Phys. Rev. B 106, L241405 (2022).
- A. O. Zlotnikov, M. S. Shustin, and A. D. Fedoseev, J. Supercond. Nov. Magn. 34, 3053 (2021).
- M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
- M. Sato, A. Yamakage, and T. Mizushima, Physica E 55, 20 (2014).
- S. Sachdev, Quantum Phases of Matter (Cambridge University Press, Cambridge, UK, 2023).
- A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997).
- J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120 (2010).
- A. Mercado, S. Sahoo, and M. Franz, Phys. Rev. Lett. 128, 137002 (2022).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.