Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Economic Model Predictive Control for linear systems with performance guarantees (2403.18398v2)

Published 27 Mar 2024 in eess.SY, cs.SY, and math.OC

Abstract: We present a model predictive control (MPC) formulation to directly optimize economic criteria for linear constrained systems subject to disturbances and uncertain model parameters. The proposed formulation combines a certainty equivalent economic MPC with a simple least-squares parameter adaptation. For the resulting adaptive economic MPC scheme, we derive strong asymptotic and transient performance guarantees. We provide a numerical example involving building temperature control and demonstrate performance benefits of online parameter adaptation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. M. Morari and J. H. Lee, “Model predictive control: past, present and future,” Computers & chemical engineering, vol. 23, no. 4-5, pp. 667–682, 1999.
  2. J. B. Rawlings, D. Angeli, and C. N. Bates, “Fundamentals of economic model predictive control,” in Proc. 51st IEEE Conference on Decision and Control (CDC).   IEEE, 2012, pp. 3851–3861.
  3. T. Faulwasser, L. Grüne, M. A. Müller et al., “Economic nonlinear model predictive control,” Foundations and Trends® in Systems and Control, vol. 5, no. 1, pp. 1–98, 2018.
  4. J. Köhler, M. A. Müller, and F. Allgöwer, “Periodic optimal control of nonlinear constrained systems using economic model predictive control,” Journal of Process Control, vol. 92, pp. 185–201, 2020.
  5. T. Faulwasser and G. Pannocchia, “Toward a unifying framework blending real-time optimization and economic model predictive control,” Industrial & Engineering Chemistry Research, vol. 58, no. 30, pp. 13 583–13 598, 2019.
  6. S. Taheri, P. Hosseini, and A. Razban, “Model predictive control of heating, ventilation, and air conditioning (HVAC) systems: A state-of-the-art review,” Journal of Building Engineering, vol. 60, p. 105067, 2022.
  7. M. J. Risbeck, C. T. Maravelias, and J. B. Rawlings, “Unification of closed-loop scheduling and control: State-space formulations, terminal constraints, and nominal theoretical properties,” Computers & Chemical Engineering, vol. 129, p. 106496, 2019.
  8. D. Angeli, R. Amrit, and J. B. Rawlings, “On Average Performance and Stability of Economic Model Predictive Control,” IEEE Transactions on Automatic Control, vol. 57, no. 7, pp. 1615–1626, Jul. 2012.
  9. R. Amrit, J. B. Rawlings, and D. Angeli, “Economic optimization using model predictive control with a terminal cost,” Annual Reviews in Control, vol. 35, no. 2, pp. 178–186, 2011.
  10. L. Grüne and M. Stieler, “Asymptotic stability and transient optimality of economic mpc without terminal conditions,” Journal of Process Control, vol. 24, no. 8, pp. 1187–1196, 2014.
  11. L. Grüne and A. Panin, “On non-averaged performance of economic mpc with terminal conditions,” in Proc. 54th IEEE Conference on Decision and Control (CDC).   IEEE, 2015, pp. 4332–4337.
  12. F. A. Bayer, M. A. Müller, and F. Allgöwer, “On optimal system operation in robust economic mpc,” Automatica, vol. 88, pp. 98–106, 2018.
  13. L. Schwenkel, J. Köhler, M. A. Müller, and F. Allgöwer, “Robust economic model predictive control without terminal conditions,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 7097–7104, 2020.
  14. C. Klöppelt, L. Schwenkel, F. Allgöwer, and M. A. Müller, “Transient performance of tube-based robust economic model predictive control,” IFAC-PapersOnLine, vol. 54, no. 6, pp. 28–35, 2021.
  15. T.-W. Yoon and D. W. Clarke, “Adaptive predictive control of the benchmark plant,” Automatica, vol. 30, no. 4, pp. 621–628, 1994.
  16. D. Q. Mayne, “Model predictive control: Recent developments and future promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.
  17. M. Lorenzen, M. Cannon, and F. Allgöwer, “Robust MPC with recursive model update,” Automatica, vol. 103, pp. 461–471, May 2019.
  18. J. Köhler, E. Andina, R. Soloperto, M. A. Müller, and F. Allgöwer, “Linear robust adaptive model predictive control: Computational complexity and conservatism,” in Proc. 58th IEEE Conf. Decision and Control (CDC), 2019, pp. 1383–1388, extended version on arXiv:1909.01813.
  19. X. Lu, M. Cannon, and D. Koksal-Rivet, “Robust adaptive model predictive control: Performance and parameter estimation,” International Journal of Robust and Nonlinear Control, vol. 31, no. 18, pp. 8703–8724, 2021.
  20. G. A. Gonçalves and M. Guay, “Robust discrete-time set-based adaptive predictive control for nonlinear systems,” Journal of Process Control, vol. 39, pp. 111–122, 2016.
  21. J. Köhler, P. Kötting, R. Soloperto, F. Allgöwer, and M. A. Müller, “A robust adaptive model predictive control framework for nonlinear uncertain systems,” International Journal of Robust and Nonlinear Control, vol. 31, no. 18, pp. 8725–8749, 2021.
  22. A. Sasfi, M. N. Zeilinger, and J. Köhler, “Robust adaptive mpc using control contraction metrics,” Automatica, vol. 155, p. 111169, 2023.
  23. R. Soloperto, M. A. Muller, and F. Allgower, “Guaranteed Closed-Loop Learning in Model Predictive Control,” IEEE Transactions on Automatic Control, vol. 68, no. 2, pp. 991–1006, Feb. 2023.
  24. R. Zuliani, R. Soloperto, and J. Lygeros, “Convergence guarantees for adaptive model predictive control with kinky inference,” arXiv preprint arXiv:2312.11329, 2023.
  25. A. Marchetti, B. Chachuat, and D. Bonvin, “Modifier-adaptation methodology for real-time optimization,” Industrial & engineering chemistry research, vol. 48, no. 13, pp. 6022–6033, 2009.
  26. M. L. Shaltout, Z. Ma, and D. Chen, “An Adaptive Economic Model Predictive Control Approach for Wind Turbines,” Journal of Dynamic Systems, Measurement, and Control, vol. 140, no. 5, p. 051007, May 2018.
  27. M. Vaccari, D. Bonvin, F. Pelagagge, and G. Pannocchia, “Offset-free economic mpc based on modifier adaptation: Investigation of several gradient-estimation techniques,” Processes, vol. 9, no. 5, p. 901, 2021.
  28. E. Oliveira-Silva, C. de Prada, D. Montes, and D. Navia, “Economic MPC with modifier adaptation using transient measurements,” Computers & Chemical Engineering, vol. 173, p. 108205, May 2023.
  29. M. Wu, “Learning-based economic control for repetitive systems,” Ph.D. dissertation, 2023.
  30. Z. Wang, Y. Chen, and Y. Li, “Development of RC model for thermal dynamic analysis of buildings through model structure simplification,” Energy and Buildings, vol. 195, pp. 51–67, Jul. 2019.
  31. J. Köhler, M. A. Müller, and F. Allgöwer, “Analysis and design of model predictive control frameworks for dynamic operation—an overview,” Annual Reviews in Control, vol. 57, p. 100929, 2024.

Summary

We haven't generated a summary for this paper yet.