Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Deciphering Chemical Ordering in High Entropy Materials: A Machine Learning-Accelerated High-throughput Cluster Expansion Approach (2403.18298v1)

Published 27 Mar 2024 in cond-mat.mtrl-sci

Abstract: The Cluster Expansion (CE) Method encounters significant computational challenges in multicomponent systems due to the computational expense of generating training data through density functional theory (DFT) calculations. This work aims to refine the cluster and structure selection processes to mitigate these challenges. We introduce a novel method that significantly reduces the computational load associated with the calculation of fitting parameters. This method employs a Graph Neural Network (GNN) model, leveraging the M3GNet network, which is trained using a select subset of DFT calculations at each ionic step. The trained surrogate model excels in predicting the volume and energy of the final structure for a relaxation run. By employing this model, we sample thousands of structures and fit a CE model to the energies of these GNN-relaxed structures. This approach, utilizing a large training dataset, effectively reduces the risk of overfitting, yielding a CE model with a root-mean-square error (RMSE) below 10 meV/atom. We validate our method's effectiveness in two test cases: the (Cr,Hf,Mo,Ta,Ti,Zr)B$_2$ diboride system and the Refractory High-Entropy Alloy (HEA) AlHfNbTaTiZr system. Our findings demonstrate the significant advantages of integrating a GNN model, specifically the M3GNet network, with CE methods for the efficient predictive analysis of chemical ordering in High Entropy Materials. The accelerating capabilities of the hybrid ML-CE approach to investigate the evolution of Short Range Ordering (SRO) in a large number of stoichiometric systems. Finally, we show how it is possible to correlate the strength of chemical ordering to easily accessible alloy parameters.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com