Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

Resonant Multi-Scalar Production in the Generic Complex Singlet Model in the Multi-TeV Region (2403.18003v2)

Published 26 Mar 2024 in hep-ph

Abstract: We develop benchmarks for resonant di-scalar production in the generic complex singlet scalar extension of the Standard Model (SM), which contains two new scalars. These benchmarks maximize di-scalar resonant production: $pp\rightarrow h_2 \rightarrow h_1 h_1/h_1h_3/h_3h_3$, where $h_1$ is the observed SM-like Higgs boson and $h_{2,3}$ are new scalars. The decays $h_2\rightarrow h_1h_3$ and $h_2\rightarrow h_3h_3$ may be the only way to discover $h_3$, leading to a discovery of two new scalars at once. Current LHC and projected future collider (HL-LHC, FCC-ee, ILC500) constraints are used to produce benchmarks at the HL-LHC for $h_2$ masses between 250 GeV and 1 TeV and a future $pp$ collider for $h_2$ masses between 250 GeV and 12 TeV. We update the current LHC bounds on the singlet-Higgs boson mixing angle. As the mass of $h_2$ increases, certain limiting behaviors of the maximum rates are uncovered due to theoretical constraints on the parameters. These limits, which can be derived analytically, are ${\rm BR}(h_2\rightarrow h_1h_1)\rightarrow 0.25$, ${\rm BR}(h_2\rightarrow h_3h_3)\rightarrow 0.5$, and ${\rm BR}(h_2\rightarrow h_1h_3) \rightarrow 0$. It can also be shown that the maximum rates of $pp\rightarrow h_2\rightarrow h_1h_1/h_3h_3$ approach the same value. Hence, all three $h_2\rightarrow h_ih_j$ decays are promising discovery modes for $h_2$ masses below $\mathcal{O}(1\,{\rm TeV})$, while above $\mathcal{O}(1\,{\rm TeV})$ the decays $h_2\rightarrow h_1h_1/h_3h_3$ are more encouraging. Masses for $h_3$ are chosen to produce a large range of signatures including multi-b, multi-vector boson, and multi-$h_1$ production. The behavior of the maximum rates imply that in the multi-TeV region this model may be discovered in the Higgs quartet production mode before Higgs triple production is observed. The maximum di- and four Higgs production rates are similar in the multi-TeV range.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (130)
  1. S. Dawson et al., “Report of the Topical Group on Higgs Physics for Snowmass 2021: The Case for Precision Higgs Physics,” in Snowmass 2021. 9, 2022. arXiv:2209.07510 [hep-ph].
  2. ATLAS Collaboration, “A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery,” Nature 607 no. 7917, (2022) 52–59, arXiv:2207.00092 [hep-ex]. [Erratum: Nature 612, E24 (2022)].
  3. CMS Collaboration, A. Tumasyan et al., “A portrait of the Higgs boson by the CMS experiment ten years after the discovery,” Nature 607 no. 7917, (2022) 60–68, arXiv:2207.00043 [hep-ex].
  4. A. Djouadi, W. Kilian, M. Muhlleitner, and P. M. Zerwas, “Production of neutral Higgs boson pairs at LHC,” Eur. Phys. J. C 10 (1999) 45–49, arXiv:hep-ph/9904287.
  5. E. W. N. Glover and J. J. van der Bij, “HIGGS BOSON PAIR PRODUCTION VIA GLUON FUSION,” Nucl. Phys. B 309 (1988) 282–294.
  6. T. Plehn, M. Spira, and P. M. Zerwas, “Pair production of neutral Higgs particles in gluon-gluon collisions,” Nucl. Phys. B 479 (1996) 46–64, arXiv:hep-ph/9603205. [Erratum: Nucl.Phys.B 531, 655–655 (1998)].
  7. T. Plehn, D. L. Rainwater, and D. Zeppenfeld, “Determining the Structure of Higgs Couplings at the LHC,” Phys. Rev. Lett. 88 (2002) 051801, arXiv:hep-ph/0105325.
  8. J. Alison et al., “Higgs boson potential at colliders: Status and perspectives,” Rev. Phys. 5 (2020) 100045, arXiv:1910.00012 [hep-ph].
  9. S. Dawson, S. Dittmaier, and M. Spira, “Neutral Higgs boson pair production at hadron colliders: QCD corrections,” Phys. Rev. D 58 (1998) 115012, arXiv:hep-ph/9805244.
  10. S. Borowka, N. Greiner, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, U. Schubert, and T. Zirke, “Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence,” Phys. Rev. Lett. 117 no. 1, (2016) 012001, arXiv:1604.06447 [hep-ph]. [Erratum: Phys.Rev.Lett. 117, 079901 (2016)].
  11. J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, M. Spira, and J. Streicher, “Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme,” Eur. Phys. J. C 79 no. 6, (2019) 459, arXiv:1811.05692 [hep-ph].
  12. M. Grazzini, G. Heinrich, S. Jones, S. Kallweit, M. Kerner, J. M. Lindert, and J. Mazzitelli, “Higgs boson pair production at NNLO with top quark mass effects,” JHEP 05 (2018) 059, arXiv:1803.02463 [hep-ph].
  13. J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, J. Ronca, and M. Spira, “g⁢g→H⁢H→𝑔𝑔𝐻𝐻gg\to HHitalic_g italic_g → italic_H italic_H : Combined uncertainties,” Phys. Rev. D 103 no. 5, (2021) 056002, arXiv:2008.11626 [hep-ph].
  14. L. Di Luzio, R. Gröber, and M. Spannowsky, “Maxi-sizing the trilinear Higgs self-coupling: how large could it be?,” Eur. Phys. J. C 77 no. 11, (2017) 788, arXiv:1704.02311 [hep-ph].
  15. S. Chang and M. A. Luty, “The Higgs Trilinear Coupling and the Scale of New Physics,” JHEP 03 (2020) 140, arXiv:1902.05556 [hep-ph].
  16. H. Bahl, J. Braathen, and G. Weiglein, “New Constraints on Extended Higgs Sectors from the Trilinear Higgs Coupling,” Phys. Rev. Lett. 129 no. 23, (2022) 231802, arXiv:2202.03453 [hep-ph].
  17. G. Durieux, G. Durieux, M. McCullough, M. McCullough, E. Salvioni, and E. Salvioni, “Charting the Higgs self-coupling boundaries,” JHEP 12 (2022) 148, arXiv:2209.00666 [hep-ph]. [Erratum: JHEP 02, 165 (2023)].
  18. V. Silveira and A. Zee, “SCALAR PHANTOMS,” Phys. Lett. B 161 (1985) 136–140.
  19. D. O’Connell, M. J. Ramsey-Musolf, and M. B. Wise, “Minimal Extension of the Standard Model Scalar Sector,” Phys. Rev. D 75 (2007) 037701, arXiv:hep-ph/0611014.
  20. V. Barger, P. Langacker, M. McCaskey, M. J. Ramsey-Musolf, and G. Shaughnessy, “LHC Phenomenology of an Extended Standard Model with a Real Scalar Singlet,” Phys. Rev. D77 no. MAD-PH-07-1492, (2008) 035005, arXiv:0706.4311 [hep-ph].
  21. M. Bowen, Y. Cui, and J. D. Wells, “Narrow trans-TeV Higgs bosons and H —>>> hh decays: Two LHC search paths for a hidden sector Higgs boson,” JHEP 03 (2007) 036, arXiv:hep-ph/0701035.
  22. S. Profumo, M. J. Ramsey-Musolf, and G. Shaughnessy, “Singlet Higgs phenomenology and the electroweak phase transition,” JHEP 08 (2007) 010, arXiv:0705.2425 [hep-ph].
  23. J. M. No and M. Ramsey-Musolf, “Probing the Higgs Portal at the LHC Through Resonant di-Higgs Production,” Phys. Rev. D 89 no. 9, (2014) 095031, arXiv:1310.6035 [hep-ph].
  24. G. M. Pruna and T. Robens, “Higgs singlet extension parameter space in the light of the LHC discovery,” Phys. Rev. D88 no. 11, (2013) 115012, arXiv:1303.1150 [hep-ph].
  25. S. Profumo, M. J. Ramsey-Musolf, C. L. Wainwright, and P. Winslow, “Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies,” Phys. Rev. D 91 no. 3, (2015) 035018, arXiv:1407.5342 [hep-ph].
  26. C.-Y. Chen, S. Dawson, and I. M. Lewis, “Exploring resonant di-Higgs boson production in the Higgs singlet model,” Phys. Rev. D91 no. 3, (2015) 035015, arXiv:1410.5488 [hep-ph].
  27. S. Dawson and I. M. Lewis, “NLO corrections to double Higgs boson production in the Higgs singlet model,” Phys. Rev. D 92 no. 9, (2015) 094023, arXiv:1508.05397 [hep-ph].
  28. D. Buttazzo, F. Sala, and A. Tesi, “Singlet-like Higgs bosons at present and future colliders,” JHEP 11 (2015) 158, arXiv:1505.05488 [hep-ph].
  29. T. Robens and T. Stefaniak, “Status of the Higgs Singlet Extension of the Standard Model after LHC Run 1,” Eur. Phys. J. C75 no. SCIPP-15-02, (2015) 104, arXiv:1501.02234 [hep-ph].
  30. T. Robens and T. Stefaniak, “LHC Benchmark Scenarios for the Real Higgs Singlet Extension of the Standard Model,” Eur. Phys. J. C76 no. 5, (2016) 268, arXiv:1601.07880 [hep-ph].
  31. A. V. Kotwal, M. J. Ramsey-Musolf, J. M. No, and P. Winslow, “Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier,” Phys. Rev. D 94 no. 3, (2016) 035022, arXiv:1605.06123 [hep-ph].
  32. I. M. Lewis and M. Sullivan, “Benchmarks for Double Higgs Production in the Singlet Extended Standard Model at the LHC,” Phys. Rev. D96 no. 3, (2017) 035037, arXiv:1701.08774 [hep-ph].
  33. T. Huang, J. M. No, L. Pernié, M. Ramsey-Musolf, A. Safonov, M. Spannowsky, and P. Winslow, “Resonant di-Higgs boson production in the b⁢b¯⁢W⁢W𝑏¯𝑏𝑊𝑊b{\bar{b}}WWitalic_b over¯ start_ARG italic_b end_ARG italic_W italic_W channel: Probing the electroweak phase transition at the LHC,” Phys. Rev. D 96 no. 3, (2017) 035007, arXiv:1701.04442 [hep-ph].
  34. S. Dawson, C. Englert, and T. Plehn, “Higgs Physics: It ain’t over till it’s over,” Phys. Rept. 816 (2019) 1–85, arXiv:1808.01324 [hep-ph].
  35. H.-L. Li, M. Ramsey-Musolf, and S. Willocq, “Probing a scalar singlet-catalyzed electroweak phase transition with resonant di-Higgs boson production in the 4⁢b4𝑏4b4 italic_b channel,” Phys. Rev. D 100 no. 7, (2019) 075035, arXiv:1906.05289 [hep-ph].
  36. A. Alves, D. Gonçalves, T. Ghosh, H.-K. Guo, and K. Sinha, “Di-Higgs Blind Spots in Gravitational Wave Signals,” Phys. Lett. B 818 (2021) 136377, arXiv:2007.15654 [hep-ph].
  37. A. Papaefstathiou and G. White, “The electro-weak phase transition at colliders: confronting theoretical uncertainties and complementary channels,” JHEP 05 (2021) 099, arXiv:2010.00597 [hep-ph].
  38. S. Dawson, S. Homiller, and S. D. Lane, “Putting standard model EFT fits to work,” Phys. Rev. D 102 no. 5, (2020) 055012, arXiv:2007.01296 [hep-ph].
  39. S. Adhikari, I. M. Lewis, and M. Sullivan, “Beyond the Standard Model effective field theory: The singlet extended Standard Model,” Phys. Rev. D 103 no. 7, (2021) 075027, arXiv:2003.10449 [hep-ph].
  40. A. Papaefstathiou and G. White, “The Electro-Weak Phase Transition at Colliders: Discovery Post-Mortem,” JHEP 02 (2022) 185, arXiv:2108.11394 [hep-ph].
  41. S. Dawson, P. P. Giardino, and S. Homiller, “Uncovering the High Scale Higgs Singlet Model,” Phys. Rev. D 103 no. 7, (2021) 075016, arXiv:2102.02823 [hep-ph].
  42. D. Curtin, P. Meade, and C.-T. Yu, “Testing Electroweak Baryogenesis with Future Colliders,” JHEP 11 (2014) 127, arXiv:1409.0005 [hep-ph].
  43. C.-Y. Chen, J. Kozaczuk, and I. M. Lewis, “Non-resonant Collider Signatures of a Singlet-Driven Electroweak Phase Transition,” JHEP 08 (2017) 096, arXiv:1704.05844 [hep-ph].
  44. P. Basler, S. Dawson, C. Englert, and M. Mühlleitner, “Showcasing HH production: Benchmarks for the LHC and HL-LHC,” Phys. Rev. D 99 no. 5, (2019) 055048, arXiv:1812.03542 [hep-ph].
  45. H. Abouabid, A. Arhrib, D. Azevedo, J. E. Falaki, P. M. Ferreira, M. Mühlleitner, and R. Santos, “Benchmarking Di-Higgs Production in Various Extended Higgs Sector Models,” arXiv:2112.12515 [hep-ph].
  46. S. Adhikari, S. D. Lane, I. M. Lewis, and M. Sullivan, “Complex Scalar Singlet Model Benchmarks for Snowmass,” in Snowmass 2021. 3, 2022. arXiv:2203.07455 [hep-ph].
  47. S. Dawson and M. Sullivan, “Enhanced di-Higgs boson production in the complex Higgs singlet model,” Phys. Rev. D97 no. 1, (2018) 015022, arXiv:1711.06683 [hep-ph].
  48. R. Costa, M. Mühlleitner, M. O. P. Sampaio, and R. Santos, “Singlet Extensions of the Standard Model at LHC Run 2: Benchmarks and Comparison with the NMSSM,” JHEP 06 (2016) 034, arXiv:1512.05355 [hep-ph].
  49. T. Robens, T. Stefaniak, and J. Wittbrodt, “Two-real-scalar-singlet extension of the SM: LHC phenomenology and benchmark scenarios,” Eur. Phys. J. C 80 no. 2, (2020) 151, arXiv:1908.08554 [hep-ph].
  50. A. Papaefstathiou, T. Robens, and G. Tetlalmatzi-Xolocotzi, “Triple Higgs Boson Production at the Large Hadron Collider with Two Real Singlet Scalars,” JHEP 05 (2021) 193, arXiv:2101.00037 [hep-ph].
  51. R. Coimbra, M. O. P. Sampaio, and R. Santos, “ScannerS: Constraining the phase diagram of a complex scalar singlet at the LHC,” Eur. Phys. J. C73 (2013) 2428, arXiv:1301.2599 [hep-ph].
  52. R. Costa, A. P. Morais, M. O. P. Sampaio, and R. Santos, “Two-loop stability of a complex singlet extended Standard Model,” Phys. Rev. D 92 (2015) 025024, arXiv:1411.4048 [hep-ph].
  53. P. M. Ferreira, “The vacuum structure of the Higgs complex singlet-doublet model,” Phys. Rev. D 94 no. 9, (2016) 096011, arXiv:1607.06101 [hep-ph].
  54. M. Mühlleitner, M. O. P. Sampaio, R. Santos, and J. Wittbrodt, “Phenomenological Comparison of Models with Extended Higgs Sectors,” JHEP 08 (2017) 132, arXiv:1703.07750 [hep-ph].
  55. P. Basler, S. Dawson, C. Englert, and M. Mühlleitner, “Di-Higgs boson peaks and top valleys: Interference effects in Higgs sector extensions,” Phys. Rev. D 101 no. 1, (2020) 015019, arXiv:1909.09987 [hep-ph].
  56. M. Mühlleitner, M. O. P. Sampaio, R. Santos, and J. Wittbrodt, “ScannerS: parameter scans in extended scalar sectors,” Eur. Phys. J. C 82 no. 3, (2022) 198, arXiv:2007.02985 [hep-ph].
  57. F. Egle, M. Mühlleitner, R. Santos, and J. a. Viana, “One-loop corrections to the Higgs boson invisible decay in a complex singlet extension of the SM,” Phys. Rev. D 106 no. 9, (2022) 095030, arXiv:2202.04035 [hep-ph].
  58. F. Egle, M. Mühlleitner, R. Santos, and J. a. Viana, “Electroweak corrections to Higgs boson decays in a Complex Singlet extension of the SM and their phenomenological impact,” JHEP 11 (2023) 116, arXiv:2306.04127 [hep-ph].
  59. V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf, and G. Shaughnessy, “Complex Singlet Extension of the Standard Model,” Phys. Rev. D79 (2009) 015018, arXiv:0811.0393 [hep-ph].
  60. L. Alexander-Nunneley and A. Pilaftsis, “The Minimal Scale Invariant Extension of the Standard Model,” JHEP 09 (2010) 021, arXiv:1006.5916 [hep-ph].
  61. S. Dawson, D. Fontes, C. Quezada-Calonge, and J. J. Sanz-Cillero, “Is the HEFT matching unique?,” Phys. Rev. D 109 no. 5, (2024) 055037, arXiv:2311.16897 [hep-ph].
  62. W. Chao, “First order electroweak phase transition triggered by the Higgs portal vector dark matter,” Phys. Rev. D 92 no. 1, (2015) 015025, arXiv:1412.3823 [hep-ph].
  63. M. Jiang, L. Bian, W. Huang, and J. Shu, “Impact of a complex singlet: Electroweak baryogenesis and dark matter,” Phys. Rev. D 93 no. 6, (2016) 065032, arXiv:1502.07574 [hep-ph].
  64. C.-W. Chiang, M. J. Ramsey-Musolf, and E. Senaha, “Standard Model with a Complex Scalar Singlet: Cosmological Implications and Theoretical Considerations,” Phys. Rev. D 97 no. 1, (2018) 015005, arXiv:1707.09960 [hep-ph].
  65. W. Cheng and L. Bian, “From inflation to cosmological electroweak phase transition with a complex scalar singlet,” Phys. Rev. D 98 no. 2, (2018) 023524, arXiv:1801.00662 [hep-ph].
  66. B. Grzadkowski and D. Huang, “Spontaneous C⁢P𝐶𝑃CPitalic_C italic_P-Violating Electroweak Baryogenesis and Dark Matter from a Complex Singlet Scalar,” JHEP 08 (2018) 135, arXiv:1807.06987 [hep-ph].
  67. N. Chen, T. Li, Y. Wu, and L. Bian, “Complementarity of the future e+⁢e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT colliders and gravitational waves in the probe of complex singlet extension to the standard model,” Phys. Rev. D 101 no. 7, (2020) 075047, arXiv:1911.05579 [hep-ph].
  68. C.-W. Chiang and B.-Q. Lu, “First-order electroweak phase transition in a complex singlet model with ℤ3subscriptℤ3\mathbb{Z}_{3}blackboard_Z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT symmetry,” JHEP 07 (2020) 082, arXiv:1912.12634 [hep-ph].
  69. G.-C. Cho, C. Idegawa, and E. Senaha, “Electroweak phase transition in a complex singlet extension of the Standard Model with degenerate scalars,” Phys. Lett. B 823 (2021) 136787, arXiv:2105.11830 [hep-ph].
  70. G.-C. Cho, C. Idegawa, and E. Senaha, “CP-violating effects on gravitational waves in a complex singlet extension of the Standard Model with degenerate scalars,” Phys. Rev. D 106 no. 11, (2022) 115012, arXiv:2205.12046 [hep-ph].
  71. G.-C. Cho, C. Idegawa, and R. Sugihara, “A complex singlet extension of the standard model and multi-critical point principle,” Phys. Lett. B 839 (2023) 137757, arXiv:2212.13029 [hep-ph].
  72. W. Zhang, Y. Cai, M. J. Ramsey-Musolf, and L. Zhang, “Testing Complex Singlet Scalar Cosmology at the Large Hadron Collider,” arXiv:2307.01615 [hep-ph].
  73. J. McDonald, “Gauge singlet scalars as cold dark matter,” Phys. Rev. D 50 (1994) 3637–3649, arXiv:hep-ph/0702143.
  74. D. G. Cerdeno, A. Dedes, and T. E. J. Underwood, “The Minimal Phantom Sector of the Standard Model: Higgs Phenomenology and Dirac Leptogenesis,” JHEP 09 (2006) 067, arXiv:hep-ph/0607157.
  75. R. K. Ellis et al., “Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020,” arXiv:1910.11775 [hep-ex].
  76. FCC Collaboration, A. Abada et al., “FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2,” Eur. Phys. J. ST 228 no. 2, (2019) 261–623.
  77. CEPC Study Group Collaboration, “CEPC Conceptual Design Report: Volume 1 - Accelerator,” arXiv:1809.00285 [physics.acc-ph].
  78. CEPC Study Group Collaboration, M. Dong et al., “CEPC Conceptual Design Report: Volume 2 - Physics & Detector,” arXiv:1811.10545 [hep-ex].
  79. “The International Linear Collider Technical Design Report - Volume 1: Executive Summary,” arXiv:1306.6327 [physics.acc-ph].
  80. ILC Collaboration, “The International Linear Collider Technical Design Report - Volume 2: Physics,” arXiv:1306.6352 [hep-ph].
  81. “The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \& in the Technical Design Phase,” arXiv:1306.6353 [physics.acc-ph].
  82. K. Kannike, “Vacuum Stability of a General Scalar Potential of a Few Fields,” Eur. Phys. J. C 76 no. 6, (2016) 324, arXiv:1603.02680 [hep-ph]. [Erratum: Eur.Phys.J.C 78, 355 (2018)].
  83. B. W. Lee, C. Quigg, and H. B. Thacker, “Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass,” Phys. Rev. D 16 (1977) 1519.
  84. B. W. Lee, C. Quigg, and H. B. Thacker, “The Strength of Weak Interactions at Very High-Energies and the Higgs Boson Mass,” Phys. Rev. Lett. 38 (1977) 883–885.
  85. M. S. Chanowitz, M. A. Furman, and I. Hinchliffe, “Weak Interactions of Ultraheavy Fermions,” Phys. Lett. B 78 (1978) 285.
  86. M. S. Chanowitz, M. A. Furman, and I. Hinchliffe, “Weak Interactions of Ultraheavy Fermions. 2.,” Nucl. Phys. B 153 (1979) 402–430.
  87. A. Schuessler and D. Zeppenfeld, “Unitarity constraints on MSSM trilinear couplings,” in 15th International Conference on Supersymmetry and the Unification of Fundamental Interactions (SUSY07), pp. 236–239. 10, 2007. arXiv:0710.5175 [hep-ph].
  88. ATLAS Collaboration, “Measurement of the Higgs boson production cross section in association with a vector boson and decaying into W⁢W∗𝑊superscript𝑊∗WW^{\ast}italic_W italic_W start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT with the ATLAS detector at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV,” Tech. Rep. ATLAS-CONF-2022-067, CERN, Geneva, 2022. https://cds.cern.ch/record/2842519.
  89. CMS Collaboration, “Measurement of the t⁢t¯⁢Ht¯tH\mathrm{t\overline{t}H}roman_t over¯ start_ARG roman_t end_ARG roman_H and tHtH\mathrm{tH}roman_tH production rates in the H→b⁢b¯→Hb¯b\mathrm{H}\to\mathrm{b\overline{b}}roman_H → roman_b over¯ start_ARG roman_b end_ARG decay channel with 138⁢fb−1138superscriptfb1138\,\mathrm{fb}^{-1}138 roman_fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of proton-proton collision data at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\mathrm{TeV}square-root start_ARG italic_s end_ARG = 13 roman_TeV,” tech. rep., CERN, Geneva, 2023. https://cds.cern.ch/record/2868175.
  90. ATLAS Collaboration, G. Aad et al., “Measurement of the H→γ⁢γ→𝐻𝛾𝛾H\to\gamma\gammaitalic_H → italic_γ italic_γ and H→Z⁢Z*→4⁢ℓ→𝐻𝑍superscript𝑍→4ℓH\to ZZ^{*}\to 4\ellitalic_H → italic_Z italic_Z start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT → 4 roman_ℓ cross-sections in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13.6𝑠13.6\sqrt{s}=13.6square-root start_ARG italic_s end_ARG = 13.6 TeV with the ATLAS detector,” arXiv:2306.11379 [hep-ex].
  91. CMS Collaboration, A. Hayrapetyan et al., “Measurement of the Higgs boson production via vector boson fusion and its decay into bottom quarks in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” arXiv:2308.01253 [hep-ex].
  92. P. Bechtle, S. Heinemeyer, T. Klingl, T. Stefaniak, G. Weiglein, and J. Wittbrodt, “HiggsSignals-2: Probing new physics with precision Higgs measurements in the LHC 13 TeV era,” Eur. Phys. J. C 81 no. 2, (2021) 145, arXiv:2012.09197 [hep-ph].
  93. H. Bahl, T. Biekötter, S. Heinemeyer, C. Li, S. Paasch, G. Weiglein, and J. Wittbrodt, “HiggsTools: BSM scalar phenomenology with new versions of HiggsBounds and HiggsSignals,” Comput. Phys. Commun. 291 (2023) 108803, arXiv:2210.09332 [hep-ph].
  94. T. Robens, “More Doublets and Singlets,” in 56th Rencontres de Moriond on Electroweak Interactions and Unified Theories. 5, 2022. arXiv:2205.06295 [hep-ph].
  95. LHC Higgs Cross Section Working Group Collaboration, D. de Florian et al., “Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector,” arXiv:1610.07922 [hep-ph].
  96. P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, and G. Weiglein, “H⁢i⁢g⁢g⁢s⁢S⁢i⁢g⁢n⁢a⁢l⁢s𝐻𝑖𝑔𝑔𝑠𝑆𝑖𝑔𝑛𝑎𝑙𝑠HiggsSignalsitalic_H italic_i italic_g italic_g italic_s italic_S italic_i italic_g italic_n italic_a italic_l italic_s: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC,” Eur. Phys. J. C 74 no. 2, (2014) 2711, arXiv:1305.1933 [hep-ph].
  97. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, and K. E. Williams, “HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron,” Comput. Phys. Commun. 182 (2011) 2605–2631, arXiv:1102.1898 [hep-ph].
  98. P. Bechtle, O. Brein, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, and K. E. Williams, “𝖧𝗂𝗀𝗀𝗌𝖡𝗈𝗎𝗇𝖽𝗌−4𝖧𝗂𝗀𝗀𝗌𝖡𝗈𝗎𝗇𝖽𝗌4\mathsf{HiggsBounds}-4sansserif_HiggsBounds - 4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC,” Eur. Phys. J. C 74 no. 3, (2014) 2693, arXiv:1311.0055 [hep-ph].
  99. P. Bechtle, D. Dercks, S. Heinemeyer, T. Klingl, T. Stefaniak, G. Weiglein, and J. Wittbrodt, “HiggsBounds-5: Testing Higgs Sectors in the LHC 13 TeV Era,” Eur. Phys. J. C 80 no. 12, (2020) 1211, arXiv:2006.06007 [hep-ph].
  100. N. Kauer and C. O’Brien, “Heavy Higgs signal–background interference in g⁢g→V⁢V→𝑔𝑔𝑉𝑉gg\rightarrow VVitalic_g italic_g → italic_V italic_V in the Standard Model plus real singlet,” Eur. Phys. J. C 75 (2015) 374, arXiv:1502.04113 [hep-ph].
  101. N. Greiner, S. Liebler, and G. Weiglein, “Interference contributions to gluon initiated heavy Higgs production in the Two-Higgs-Doublet Model,” Eur. Phys. J. C 76 no. 3, (2016) 118, arXiv:1512.07232 [hep-ph].
  102. M. Carena, Z. Liu, and M. Riembau, “Probing the electroweak phase transition via enhanced di-Higgs boson production,” Phys. Rev. D 97 no. 9, (2018) 095032, arXiv:1801.00794 [hep-ph].
  103. D. López-Val and T. Robens, “ΔΔ\Deltaroman_Δr and the W-boson mass in the singlet extension of the standard model,” Phys. Rev. D90 (2014) 114018, arXiv:1406.1043 [hep-ph].
  104. J. de Blas, M. Ciuchini, E. Franco, S. Mishima, M. Pierini, L. Reina, and L. Silvestrini, “Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future,” JHEP 12 (2016) 135, arXiv:1608.01509 [hep-ph].
  105. A. Ilnicka, T. Robens, and T. Stefaniak, “Constraining Extended Scalar Sectors at the LHC and beyond,” Mod. Phys. Lett. A 33 no. 10n11, (2018) 1830007, arXiv:1803.03594 [hep-ph].
  106. ATLAS Collaboration, G. Aad et al., “Search for heavy resonances decaying into a pair of Z bosons in the ℓ+⁢ℓ−⁢ℓ′⁣+⁢ℓ′⁣−superscriptℓsuperscriptℓsuperscriptℓ′superscriptℓ′\ell^{+}\ell^{-}\ell^{\prime+}\ell^{\prime-}roman_ℓ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_ℓ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT roman_ℓ start_POSTSUPERSCRIPT ′ + end_POSTSUPERSCRIPT roman_ℓ start_POSTSUPERSCRIPT ′ - end_POSTSUPERSCRIPT and ℓ+⁢ℓ−⁢ν⁢ν¯superscriptℓsuperscriptℓ𝜈¯𝜈\ell^{+}\ell^{-}\nu{{\bar{\nu}}}roman_ℓ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_ℓ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_ν over¯ start_ARG italic_ν end_ARG final states using 139 fb−1superscriptfb1\mathrm{fb}^{-1}roman_fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of proton–proton collisions at s=13𝑠13\sqrt{s}=13\,square-root start_ARG italic_s end_ARG = 13TeV with the ATLAS detector,” Eur. Phys. J. C 81 no. 4, (2021) 332, arXiv:2009.14791 [hep-ex].
  107. ATLAS Collaboration, G. Aad et al., “Search for heavy diboson resonances in semileptonic final states in pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Eur. Phys. J. C 80 no. 12, (2020) 1165, arXiv:2004.14636 [hep-ex].
  108. ATLAS Collaboration, “Search for heavy resonances in the decay channel W+W−→e⁢ν⁢μ⁢ν→𝑊limit-from𝑊𝑒𝜈𝜇𝜈W+W-\rightarrow e\nu\mu\nuitalic_W + italic_W - → italic_e italic_ν italic_μ italic_ν in p⁢p𝑝𝑝ppitalic_p italic_p Collisions at S=13𝑆13\sqrt{S}=13square-root start_ARG italic_S end_ARG = 13 TeV using 139 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of data with the ATLAS detector,” Tech. Rep. ATLAS-CONF-2022-066, CERN, Geneva, 2022. http://cds.cern.ch/record/2842518.
  109. ATLAS Collaboration, G. Aad et al., “Search for the H⁢H→b⁢b¯⁢b⁢b¯→𝐻𝐻𝑏¯𝑏𝑏¯𝑏HH\rightarrow b\bar{b}b\bar{b}italic_H italic_H → italic_b over¯ start_ARG italic_b end_ARG italic_b over¯ start_ARG italic_b end_ARG process via vector-boson fusion production using proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” JHEP 07 (2020) 108, arXiv:2001.05178 [hep-ex]. [Erratum: JHEP 01, 145 (2021), Erratum: JHEP 05, 207 (2021)].
  110. ATLAS Collaboration, M. Aaboud et al., “Search for Higgs boson pair production in the b⁢b¯⁢W⁢W*𝑏¯𝑏𝑊superscript𝑊b\bar{b}WW^{*}italic_b over¯ start_ARG italic_b end_ARG italic_W italic_W start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT decay mode at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” JHEP 04 (2019) 092, arXiv:1811.04671 [hep-ex].
  111. ATLAS Collaboration, M. Aaboud et al., “Search for Higgs boson pair production in the γ⁢γ⁢W⁢W*𝛾𝛾𝑊superscript𝑊\gamma\gamma WW^{*}italic_γ italic_γ italic_W italic_W start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT channel using p⁢p𝑝𝑝ppitalic_p italic_p collision data recorded at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Eur. Phys. J. C 78 no. 12, (2018) 1007, arXiv:1807.08567 [hep-ex].
  112. ATLAS Collaboration, M. Aaboud et al., “Search for Higgs boson pair production in the W⁢W(*)⁢W⁢W(*)𝑊superscript𝑊𝑊superscript𝑊WW^{(*)}WW^{(*)}italic_W italic_W start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT italic_W italic_W start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT decay channel using ATLAS data recorded at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 05 (2019) 124, arXiv:1811.11028 [hep-ex].
  113. ATLAS Collaboration, “Combination of searches for non-resonant and resonant Higgs boson pair production in the b⁢b¯⁢γ⁢γ𝑏¯𝑏𝛾𝛾b\bar{b}\gamma\gammaitalic_b over¯ start_ARG italic_b end_ARG italic_γ italic_γ, b⁢b¯⁢τ+⁢τ−𝑏¯𝑏superscript𝜏superscript𝜏b\bar{b}\tau^{+}\tau^{-}italic_b over¯ start_ARG italic_b end_ARG italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT and b⁢b¯⁢b⁢b¯𝑏¯𝑏𝑏¯𝑏b\bar{b}b\bar{b}italic_b over¯ start_ARG italic_b end_ARG italic_b over¯ start_ARG italic_b end_ARG decay channels using p⁢p𝑝𝑝ppitalic_p italic_p collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Tech. Rep. ATLAS-CONF-2021-052, CERN, Geneva, 2021. http://cds.cern.ch/record/2786865.
  114. CMS Collaboration, A. Tumasyan et al., “Search for heavy resonances decaying to ZZ or ZW and axion-like particles mediating nonresonant ZZ or ZH production at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 04 (2022) 087, arXiv:2111.13669 [hep-ex].
  115. CMS Collaboration, A. M. Sirunyan et al., “Search for a new scalar resonance decaying to a pair of Z bosons in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 06 (2018) 127, arXiv:1804.01939 [hep-ex]. [Erratum: JHEP 03, 128 (2019)].
  116. CMS Collaboration, “Search for high mass resonances decaying into W+⁢W−superscriptWsuperscriptW\mathrm{W^{+}}\mathrm{W^{-}}roman_W start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_W start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT in the dileptonic final state with 138⁢fb−1138superscriptfb1138\,\text{fb}^{-1}138 fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of proton-proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV,” Tech. Rep. CMS-PAS-HIG-20-016, CERN, Geneva, 2022. http://cds.cern.ch/record/2803723.
  117. CMS Collaboration, A. M. Sirunyan et al., “Search for a heavy Higgs boson decaying to a pair of W bosons in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 03 (2020) 034, arXiv:1912.01594 [hep-ex].
  118. CMS Collaboration, A. M. Sirunyan et al., “Search for resonant pair production of Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at 13 TeV,” JHEP 08 (2018) 152, arXiv:1806.03548 [hep-ex].
  119. CMS Collaboration, A. M. Sirunyan et al., “Search for a massive resonance decaying to a pair of Higgs bosons in the four b quark final state in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV,” Phys. Lett. B 781 (2018) 244–269, arXiv:1710.04960 [hep-ex].
  120. CMS Collaboration, A. M. Sirunyan et al., “Search for production of Higgs boson pairs in the four b quark final state using large-area jets in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 01 (2019) 040, arXiv:1808.01473 [hep-ex].
  121. CMS Collaboration, “Search for a new resonance decaying to two scalars in the final state with two bottom quarks and two photons in proton-proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\mathrm{TeV}square-root start_ARG italic_s end_ARG = 13 roman_TeV,” Tech. Rep. CMS-PAS-HIG-21-011, CERN, Geneva, 2022. http://cds.cern.ch/record/2815230.
  122. CMS Collaboration, A. M. Sirunyan et al., “Search for resonant pair production of Higgs bosons in the b⁢b⁢Z⁢Z𝑏𝑏𝑍𝑍bbZZitalic_b italic_b italic_Z italic_Z channel in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV,” Phys. Rev. D 102 no. 3, (2020) 032003, arXiv:2006.06391 [hep-ex].
  123. CMS Collaboration, A. Tumasyan et al., “Search for Higgs boson pairs decaying to WW*WW*, WW*τ⁢τ𝜏𝜏\tau\tauitalic_τ italic_τ, and τ⁢τ⁢τ⁢τ𝜏𝜏𝜏𝜏\tau\tau\tau\tauitalic_τ italic_τ italic_τ italic_τ in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 07 (2023) 095, arXiv:2206.10268 [hep-ex].
  124. CMS Collaboration, A. Tumasyan et al., “Search for heavy resonances decaying to a pair of Lorentz-boosted Higgs bosons in final states with leptons and a bottom quark pair at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG= 13 TeV,” JHEP 05 (2022) 005, arXiv:2112.03161 [hep-ex].
  125. CMS Collaboration, “Search for HH production in the bbWW decay mode,” Tech. Rep. CMS-PAS-HIG-21-005, CERN, Geneva, 2023. http://cds.cern.ch/record/2853597.
  126. CMS Collaboration, A. Tumasyan et al., “Search for a heavy Higgs boson decaying into two lighter Higgs bosons in the τ⁢τ𝜏𝜏\tau\tauitalic_τ italic_τbb final state at 13 TeV,” JHEP 11 (2021) 057, arXiv:2106.10361 [hep-ex].
  127. CMS Collaboration, A. M. Sirunyan et al., “Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton–proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG =13TeV,” Phys. Lett. B 778 (2018) 101–127, arXiv:1707.02909 [hep-ex].
  128. ATLAS Collaboration, G. Aad et al., “Search for resonant pair production of Higgs bosons in the b⁢b¯⁢b⁢b¯𝑏¯𝑏𝑏¯𝑏b\bar{b}b\bar{b}italic_b over¯ start_ARG italic_b end_ARG italic_b over¯ start_ARG italic_b end_ARG final state using p⁢p𝑝𝑝ppitalic_p italic_p collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Phys. Rev. D 105 no. 9, (2022) 092002, arXiv:2202.07288 [hep-ex].
  129. ATLAS Collaboration, G. Aad et al., “Search for resonant and non-resonant Higgs boson pair production in the b⁢b¯⁢τ+⁢τ−𝑏¯𝑏superscript𝜏superscript𝜏b\overline{b}{\tau}^{+}{\tau}^{-}italic_b over¯ start_ARG italic_b end_ARG italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT decay channel using 13 TeV pp collision data from the ATLAS detector,” JHEP 07 (2023) 040, arXiv:2209.10910 [hep-ex].
  130. ATLAS Collaboration, G. Aad et al., “Search for Higgs boson pair production in the two bottom quarks plus two photons final state in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Phys. Rev. D 106 no. 5, (2022) 052001, arXiv:2112.11876 [hep-ex].
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com