Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Point potentials on Euclidean space, hyperbolic space and sphere in any dimension (2403.17583v2)

Published 26 Mar 2024 in math-ph and math.MP

Abstract: In dimensions d= 1, 2, 3 the Laplacian can be perturbed by a point potential. In higher dimensions the Laplacian with a point potential cannot be defined as a self-adjoint operator. However, for any dimension there exists a natural family of functions that can be interpreted as Green's functions of the Laplacian with a spherically symmetric point potential. In dimensions 1, 2, 3 they are the integral kernels of the resolvent of well-defined self-adjoint operators. In higher dimensions they are not even integral kernels of bounded operators. Their construction uses the so-called generalized integral, a concept going back to Riesz and Hadamard. We consider the Laplace(-Beltrami) operator on the Euclidean space, the hyperbolic space and the sphere in any dimension. We describe the corresponding Green's functions, also perturbed by a point potential. We describe their limit as the scaled hyperbolic space and the scaled sphere approach the Euclidean space. Especially interesting is the behavior of positive eigenvalues of the spherical Laplacian, which undergo a shift proportional to a negative power of the radius of the sphere. We expect that in any dimension our constructions yield possible behaviors of the integral kernel of the resolvent of a perturbed Laplacian far from the support of the perturbation. Besides, they can be viewed as toy models illustrating various aspects of renormalization in Quantum Field Theory, especially the point-splitting method and dimensional regularization.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube