Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Formal Verification of the Empty Hexagon Number (2403.17370v1)

Published 26 Mar 2024 in cs.CG and cs.LO

Abstract: A recent breakthrough in computer-assisted mathematics showed that every set of $30$ points in the plane in general position (i.e., without three on a common line) contains an empty convex hexagon, thus closing a line of research dating back to the 1930s. Through a combination of geometric insights and automated reasoning techniques, Heule and Scheucher constructed a CNF formula $\phi_n$, with $O(n4)$ clauses, whose unsatisfiability implies that no set of $n$ points in general position can avoid an empty convex hexagon. An unsatisfiability proof for n = 30 was then found with a SAT solver using 17300 CPU hours of parallel computation, thus implying that the empty hexagon number h(6) is equal to 30. In this paper, we formalize and verify this result in the Lean theorem prover. Our formalization covers discrete computational geometry ideas and SAT encoding techniques that have been successfully applied to similar Erd\H{o}s-Szekeres-type problems. In particular, our framework provides tools to connect standard mathematical objects to propositional assignments, which represents a key step towards the formal verification of other SAT-based mathematical results. Overall, we hope that this work sets a new standard for verification when extensive computation is used for discrete geometry problems, and that it increases the trust the mathematical community has in computer-assisted proofs in this area.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, NLD, 2009.
  2. The Resolution of Keller’s Conjecture, 2023. arXiv:1910.03740.
  3. A SAT-based resolution of Lam’s Problem. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, pages 3669–3676. AAAI Press, 2021. URL: https://doi.org/10.1609/aaai.v35i5.16483, doi:10.1609/AAAI.V35I5.16483.
  4. Bridges-2: A Platform for Rapidly-Evolving and Data Intensive Research, pages 1–4. Association for Computing Machinery, New York, NY, USA, 2021.
  5. Davide Castelvecchi. Mathematicians welcome computer-assisted proof in ’grand unification’ theory. Nature, 595(7865):18–19, June 2021. URL: http://dx.doi.org/10.1038/d41586-021-01627-2, doi:10.1038/d41586-021-01627-2.
  6. Verified Encodings for SAT Solvers. In Alexander Nadel and Kristin Yvonne Rozier, editors, Proceedings of the 23rd conference on Formal Methods In Computer-Aided Design, 2023.
  7. Symmetry-breaking predicates for search problems. In Proc. KR’96, 5th Int. Conf. on Knowledge Representation and Reasoning, pages 148–159. Morgan Kaufmann, 1996.
  8. Formally Verifying the Solution to the Boolean Pythagorean Triples Problem. J. Autom. Reason., 63(3):695–722, oct 2019. doi:10.1007/s10817-018-9490-4.
  9. Formally Proving the Boolean Pythagorean Triples Conjecture. In Thomas Eiter and David Sands, editors, LPAR-21. 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning, volume 46 of EPiC Series in Computing, pages 509–522. EasyChair, 2017. URL: https://easychair.org/publications/paper/xq6J, doi:10.29007/jvdj.
  10. The Lean Theorem Prover (System Description). In Amy P. Felty and Aart Middeldorp, editors, Automated Deduction - CADE-25, pages 378–388, Cham, 2015. Springer International Publishing.
  11. On some extremum problems in elementary geometry. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 3(4):53–62, 1960.
  12. A combinatorial problem in geometry. Compositio Mathematica, 2:463–470, 1935. URL: http://eudml.org/doc/88611.
  13. Sweeps, arrangements and signotopes. Discrete Applied Mathematics, 109(1):67–94, April 2001. doi:10.1016/S0166-218X(00)00232-8.
  14. Tobias Gerken. Empty Convex Hexagons in Planar Point Sets. Discrete & Computational Geometry, 39(1):239–272, mar 2008. doi:10.1007/s00454-007-9018-x.
  15. Puzzle Solving with Proof. Master’s thesis, Chalmers University of Technology, 2021.
  16. On a conjecture of Marton, 2023. arXiv:2311.05762.
  17. Heiko Harborth. Konvexe Fünfecke in ebenen Punktmengen. Elemente der Mathematik, 33:116–118, 1978. URL: http://eudml.org/doc/141217.
  18. Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer, page 228–245. Springer International Publishing, 2016. URL: http://dx.doi.org/10.1007/978-3-319-40970-2_15, doi:10.1007/978-3-319-40970-2_15.
  19. Marijn J. H. Heule and Manfred Scheucher. Happy ending: An empty hexagon in every set of 30 points, 2024. arXiv:2403.00737.
  20. Two extensions of the erdős-szekeres problem. arXiv preprint arXiv:1710.11415, 2017.
  21. J. D. Horton. Sets with No Empty Convex 7-Gons. Canadian Mathematical Bulletin, 26(4):482–484, 1983. doi:10.4153/CMB-1983-077-8.
  22. Donald E. Knuth. Axioms and Hulls. In Donald E. Knuth, editor, Axioms and Hulls, Lecture Notes in Computer Science, pages 1–98. Springer, Berlin, Heidelberg, 1992. doi:10.1007/3-540-55611-7_1.
  23. A SAT Attack on the Erdos Discrepancy Conjecture, 2014. arXiv:1402.2184.
  24. Peter Lammich. Efficient Verified (UN)SAT Certificate Checking. Journal of Automated Reasoning, 64(3):513–532, March 2020. doi:10.1007/s10817-019-09525-z.
  25. Filip Maric. Formal verification of a modern SAT solver by shallow embedding into Isabelle/HOL. Theor. Comput. Sci., 411(50):4333–4356, 2010. URL: https://doi.org/10.1016/j.tcs.2010.09.014, doi:10.1016/J.TCS.2010.09.014.
  26. Filip Maric. Fast formal proof of the Erdős-Szekeres conjecture for convex polygons with at most 6 points. J. Autom. Reason., 62(3):301–329, 2019. URL: https://doi.org/10.1007/s10817-017-9423-7, doi:10.1007/S10817-017-9423-7.
  27. The mathlib Community. The Lean mathematical library. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, POPL ’20. ACM, January 2020. URL: http://dx.doi.org/10.1145/3372885.3373824, doi:10.1145/3372885.3373824.
  28. Carlos M. Nicolas. The Empty Hexagon Theorem. Discrete & Computational Geometry, 38(2):389–397, September 2007. doi:10.1007/s00454-007-1343-6.
  29. Versat: A Verified Modern SAT Solver. In Viktor Kuncak and Andrey Rybalchenko, editors, Verification, Model Checking, and Abstract Interpretation, pages 363–378, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
  30. Manfred Scheucher. Two disjoint 5-holes in point sets. Computational Geometry, 91:101670, December 2020. doi:10.1016/j.comgeo.2020.101670.
  31. Sarek Høverstad Skotåm. CreuSAT, Using Rust and Creusot to create the world’s fastest deductively verified SAT solver. Master’s thesis, University of Oslo, 2022. URL: https://www.duo.uio.no/handle/10852/96757.
  32. Leila Sloman. ‘A-Team’ of Math Proves a Critical Link Between Addition and Sets. https://www.quantamagazine.org/a-team-of-math-proves-a-critical-link-between-addition-and-sets-20231206/, December 2023.
  33. Bernardo Subercaseaux and Marijn J. H. Heule. The Packing Chromatic Number of the Infinite Square Grid is 15. In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools and Algorithms for the Construction and Analysis of Systems - 29th International Conference, TACAS 2023, Held as Part of ETAPS 2022, Proceedings, Part I, volume 13993 of Lecture Notes in Computer Science, page 389–406. Springer, 2023. doi:10.1007/978-3-031-30823-9_20.
  34. Minimizing pentagons in the plane through automated reasoning, 2023. arXiv:2311.03645.
  35. Andrew Suk. On the erdős-szekeres convex polygon problem. Journal of the American Mathematical Society, 30(4):1047–1053, 2017.
  36. Computer solution to the 17-point Erdős-Szekeres problem. The ANZIAM Journal, 48(2):151–164, 2006. doi:10.1017/S144618110000300X.
  37. Computer solution to the 17-point erdős-szekeres problem. The ANZIAM Journal, 48(2):151–164, 2006.
  38. Verified Propagation Redundancy and Compositional UNSAT Checking in CakeML. International Journal on Software Tools for Technology Transfer, 25(2):167–184, April 2023. doi:10.1007/s10009-022-00690-y.
  39. Mark Walters. It Appears That Four Colors Suffice : A Historical Overview of the Four-Color Theorem. 2004. URL: https://api.semanticscholar.org/CorpusID:14382286.
  40. DRAT-trim: Efficient checking and trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing – SAT 2014, pages 422–429, Cham, 2014. Springer International Publishing.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com