Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compatible 4-Holes in Point Sets (1706.08105v4)

Published 25 Jun 2017 in cs.CG and cs.DM

Abstract: Counting interior-disjoint empty convex polygons in a point set is a typical Erd\H{o}s-Szekeres-type problem. We study this problem for 4-gons. Let $P$ be a set of $n$ points in the plane and in general position. A subset $Q$ of $P$, with four points, is called a $4$-hole in $P$ if $Q$ is in convex position and its convex hull does not contain any point of $P$ in its interior. Two 4-holes in $P$ are compatible if their interiors are disjoint. We show that $P$ contains at least $\lfloor 5n/11\rfloor {-} 1$ pairwise compatible 4-holes. This improves the lower bound of $2\lfloor(n-2)/5\rfloor$ which is implied by a result of Sakai and Urrutia (2007).

Citations (2)

Summary

We haven't generated a summary for this paper yet.