Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Rotating metrics and new multipole moments from scattering amplitudes in arbitrary dimensions (2403.16574v3)

Published 25 Mar 2024 in hep-th, gr-qc, and hep-ph

Abstract: We compute the vacuum metric generated by a generic rotating object in arbitrary dimensions up to third post-Minkowskian order by computing the classical contribution of scattering amplitudes describing the graviton emission by massive spin-1 particles up to two loops. The solution depends on the mass, angular momenta, and on up to two parameters related to generic quadrupole moments. In $D=4$ spacetime dimensions, we recover the vacuum Hartle-Thorne solution describing a generic spinning object to second order in the angular momentum, of which the Kerr metric is a particular case obtained for a specific mass quadrupole moment dictated by the uniqueness theorem. At the level of the effective action, the case of minimal couplings corresponds to the Kerr black hole, while any other mass quadrupole moment requires non-minimal couplings. In $D>4$, the absence of black-hole uniqueness theorems implies that there are multiple spinning black hole solutions with different topology. Using scattering amplitudes, we find a generic solution depending on the mass, angular momenta, the mass quadrupole moment, and a new stress quadrupole moment which does not exist in $D=4$. As special cases, we recover the Myers-Perry and the single-angular-momentum black ring solutions, to third and first post-Minkowksian order, respectively. Interestingly, at variance with the four dimensional case, none of these solutions corresponds to the minimal coupling in the effective action. This shows that, from the point of view of scattering amplitudes, black holes are the "simplest" General Relativity vacuum solutions only in $D=4$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. R. P. Feynman, Acta Phys. Polon. 24, 697 (1963).
  2. B. S. DeWitt, Phys. Rev. 160, 1113 (1967a).
  3. B. S. DeWitt, Phys. Rev. 162, 1195 (1967b).
  4. B. S. DeWitt, Phys. Rev. 162, 1239 (1967c).
  5. G. ’t Hooft and M. J. G. Veltman, Ann. Inst. H. Poincare Phys. Theor. A 20, 69 (1974).
  6. J. F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994a), arXiv:gr-qc/9310024 .
  7. J. F. Donoghue, Phys. Rev. D 50, 3874 (1994b), arXiv:gr-qc/9405057 .
  8. Y. Iwasaki, Prog. Theor. Phys. 46, 1587 (1971).
  9. J. F. Donoghue and T. Torma, Phys. Rev. D 54, 4963 (1996), arXiv:hep-th/9602121 .
  10. B. R. Holstein and J. F. Donoghue, Phys. Rev. Lett. 93, 201602 (2004), arXiv:hep-th/0405239 .
  11. P. H. Damgaard and K. Lee,   (2024), arXiv:2403.13216 [hep-th] .
  12. C. Gambino, The Reissner-Nordström-Tangherlini solution from graviton and photon emission processes, Master’s thesis, Rome U. (2022), arXiv:2210.13190 [hep-th] .
  13. M. J. Duff, Phys. Rev. D 7, 2317 (1973).
  14. G. U. Jakobsen, Phys. Rev. D 102, 104065 (2020), arXiv:2006.01734 [hep-th] .
  15. F. R. Tangherlini, Nuovo Cim. 27, 636 (1963).
  16. S. Mougiakakos and P. Vanhove, Phys. Rev. D 103, 026001 (2021), arXiv:2010.08882 [hep-th] .
  17. J. B. Hartle, Astrophys. J. 150, 1005 (1967).
  18. J. B. Hartle and K. S. Thorne, Astrophys. J. 153, 807 (1968).
  19. W. Israel, Phys. Rev. 164, 1776 (1967).
  20. B. Carter, Phys. Rev. Lett. 26, 331 (1971).
  21. S. W. Hawking, Commun. Math. Phys. 25, 152 (1972).
  22. D. C. Robinson, Phys. Rev. Lett. 34, 905 (1975).
  23. D. Robinson, Four decades of black holes uniqueness theorems (Cambridge University Press, 2009).
  24. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2011).
  25. M. Heusler, Living Rev. Relativity 1 (1998).
  26. E. Skvortsov and M. Tsulaia,   (2023), arXiv:2312.08184 [hep-th] .
  27. R. Emparan and H. S. Reall, Living Rev. Rel. 11, 6 (2008), arXiv:0801.3471 [hep-th] .
  28. R. C. Myers and M. J. Perry, Annals Phys. 172, 304 (1986).
  29. R. Emparan and H. S. Reall, Phys. Rev. Lett. 88, 101101 (2002), arXiv:hep-th/0110260 .
  30. J. Heynen and D. R. Mayerson,   (2023), arXiv:2312.04352 [gr-qc] .
  31. K. S. Thorne, Rev. Mod. Phys. 52, 299 (1980).
  32. R. P. Geroch, J. Math. Phys. 11, 1955 (1970a).
  33. R. P. Geroch, J. Math. Phys. 11, 2580 (1970b).
  34. R. O. Hansen, J. Math. Phys. 15, 46 (1974).
  35. V. Cardoso and L. Gualtieri, Class. Quant. Grav. 33, 174001 (2016), arXiv:1607.03133 [gr-qc] .
  36. D. R. Mayerson, SciPost Phys. 15, 154 (2023), arXiv:2210.05687 [gr-qc] .
  37. G. Raposo and P. Pani, Phys. Rev. D 102, 044045 (2020), arXiv:2002.02555 [gr-qc] .
  38. R. Emparan and H. S. Reall, Class. Quant. Grav. 23, R169 (2006), arXiv:hep-th/0608012 .
  39. Y. Morisawa and D. Ida, Phys. Rev. D 69, 124005 (2004), arXiv:gr-qc/0401100 .
  40. I. Bena and D. R. Mayerson, Phys. Rev. Lett. 125, 221602 (2020), arXiv:2006.10750 [hep-th] .
  41. I. Bena and D. R. Mayerson, JHEP 03, 114 (2021), arXiv:2007.09152 [hep-th] .
  42. K. Fransen and D. R. Mayerson, Phys. Rev. D 106, 064035 (2022), arXiv:2201.03569 [gr-qc] .
  43. H. Elvang and P. Figueras, JHEP 05, 050 (2007), arXiv:hep-th/0701035 .
  44. R. Emparan and P. Figueras, JHEP 11, 022 (2010), arXiv:1008.3243 [hep-th] .
  45. H. Kodama and A. Ishibashi, Prog. Theor. Phys. 110, 701 (2003), arXiv:hep-th/0305147 .
  46. B. Kol and M. Smolkin, JHEP 02, 010 (2012), arXiv:1110.3764 [hep-th] .
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.