Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Power-Aware Sparse Reflect Beamforming in Active RIS-aided Interference Channels (2403.16472v2)

Published 25 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: Active reconfigurable intelligent surface (RIS) has attracted significant attention in wireless communications, due to its reflecting elements (REs) capable of reflecting incident signals with not only phase shifts but also amplitude amplifications. In this paper, we are interested in active RIS-aided interference channels in which $K$ user pairs share the same time and frequency resources with the aid of active RIS. Thanks to the promising amplitude amplification capability, activating a moderate number of REs, rather than all of them, is sufficient for the active RIS to mitigate cross-channel interferences. Motivated by this, we propose a power-aware sparse reflect beamforming design for the active RIS-aided interference channels, which allows the active RIS to flexibly adjust the number of activated REs for the sake of reducing hardware and power costs. Specifically, we establish the power consumption model in which only those activated REs consume the biasing and operation power that supports the amplitude amplification, yielding an $\ell_0$-norm power consumption function. Based on the proposed model, we investigate a sum-rate maximization problem and an active RIS power minimization problem by carefully designing the sparse reflect beamforming vector. To solve these problems, we first replace the nonconvex $\ell_0$-norm function with an iterative reweighted $\ell_1$-norm function. Then, fractional programming is used to solve the sum-rate maximization, while semidefinite programming together with the difference-of-convex algorithm (DCA) is used to solve the active RIS power minimization. Numerical results show that the proposed sparse designs can notably increase the sum rate of user pairs and decrease the power consumption of active RIS in interference channels.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. X. You, C.-X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang, C. Zhang, Y. Jiang, J. Wang et al., “Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts,” Science China Information Sciences, vol. 64, pp. 1–74, 2021.
  2. Y.-C. Liang, R. Long, Q. Zhang, J. Chen, H. V. Cheng, and H. Guo, “Large intelligent surface/antennas LISA: Making reflective radios smart,” J. Commun. Inf. Netw., vol. 4, no. 2, pp. 40–50, Jun. 2019.
  3. M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. de Rosny, and S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2450–2525, 2020.
  4. H. Guo, Y.-C. Liang, J. Chen, and E. G. Larsson, “Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3064–3076, 2020.
  5. C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157–4170, Aug 2019.
  6. R. Long, Y.-C. Liang, Y. Pei, and E. G. Larsson, “Active reconfigurable intelligent surface-aided wireless communications,” IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 4962–4975, 2021.
  7. M. Najafi, V. Jamali, R. Schober, and H. V. Poor, “Physics-based modeling and scalable optimization of large intelligent reflecting surfaces,” IEEE Trans. Commun., vol. 69, no. 4, pp. 2673–2691, 2020.
  8. L. Wu, K. Lou, J. Ke, J. Liang, Z. Luo, J. Y. Dai, Q. Cheng, and T. J. Cui, “A wideband amplifying reconfigurable intelligent surface,” IEEE Trans. Antennas Propag., vol. 70, no. 11, pp. 10 623–10 631, 2022.
  9. J. Rao, Y. Zhang, S. Tang, Z. Li, C.-Y. Chiu, and R. Murch, “An active reconfigurable intelligent surface utilizing phase-reconfigurable reflection amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 71, no. 7, pp. 3189–3202, 2023.
  10. Z. Zhang, L. Dai, X. Chen, C. Liu, F. Yang, R. Schober, and H. V. Poor, “Active RIS vs. passive RIS: Which will prevail in 6G?” IEEE Trans. Commun., vol. 71, no. 3, pp. 1707–1725, 2023.
  11. L. Dong, H.-M. Wang, and J. Bai, “Active reconfigurable intelligent surface aided secure transmission,” IEEE Trans. Veh. Technol., vol. 71, no. 2, pp. 2181–2186, 2022.
  12. Y. Gao, Q. Wu, G. Zhang, W. Chen, D. W. K. Ng, and M. Di Renzo, “Beamforming optimization for active intelligent reflecting surface-aided swipt,” IEEE Trans. Wireless Commun., pp. 1–1, 2022.
  13. S. Yang, R. Long, and Y.-C. Liang, “Active reconfigurable intelligent surface-aided cognitive radio system,” in IEEE ICC, 2023, pp. 1–6.
  14. E. A. Jorswieck, E. G. Larsson, and D. Danev, “Complete characterization of the pareto boundary for the MISO interference channel,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 5292–5296, 2008.
  15. V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of freedom of the k𝑘kitalic_k-user interference channel,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3425–3441, 2008.
  16. A. H. A. Bafghi, V. Jamali, M. Nasiri-Kenari, and R. Schober, “Degrees of freedom of the K-user interference channel assisted by active and passive IRSs,” IEEE Trans. Commun., 2022.
  17. T. Jiang and W. Yu, “Interference nulling using reconfigurable intelligent surface,” IEEE J. Sel. Areas Commun., vol. 40, no. 5, pp. 1392–1406, 2022.
  18. M. A. ElMossallamy, K. G. Seddik, W. Chen, L. Wang, G. Y. Li, and Z. Han, “RIS optimization on the complex circle manifold for interference mitigation in interference channels,” IEEE Trans. Veh. Technol., vol. 70, no. 6, pp. 6184–6189, 2021.
  19. F. Amato, H. M. Torun, and G. D. Durgin, “RFID backscattering in long-range scenarios,” IEEE Trans. Wireless Commun., vol. 17, no. 4, pp. 2718–2725, April 2018.
  20. J. Chen, Y.-C. Liang, H. V. Cheng, and W. Yu, “Channel estimation for reconfigurable intelligent surface aided multi-user MIMO systems,” arXiv preprint arXiv:1912.03619, 2019.
  21. E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT minimization,” J. Fourier Anal. Appl., vol. 14, no. 5, pp. 877–905, 2008.
  22. B. Dai and W. Yu, “Sparse beamforming and user-centric clustering for downlink cloud radio access network,” IEEE Access, vol. 2, pp. 1326–1339, 2014.
  23. K. Shen and W. Yu, “Fractional programming for communication systems—part I: Power control and beamforming,” IEEE Trans. Signal Process., vol. 66, no. 10, pp. 2616–2630, 2018.
  24. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming,” 2008. [Online]. Available: cvxr.com/cvx.
  25. M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of second-order cone programming,” Linear algebra and its applications, vol. 284, no. 1-3, pp. 193–228, 1998.
  26. Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5394–5409, Nov 2019.
  27. K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-the-air computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2022–2035, 2020.
  28. H. A. Le Thi and T. Pham Dinh, “DC programming and DCA: thirty years of developments,” Mathematical Programming, vol. 169, no. 1, pp. 5–68, 2018.
  29. R. T. Rockafellar, “Convex analysis,” in Convex Analysis.   Princeton University Press, 2015.
  30. Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,” IEEE Signal Processing Magazine, vol. 27, no. 3, pp. 20–34, 2010.
  31. Q. Wu and R. Zhang, “Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT under QoS constraints,” arXiv preprint arXiv:1910.06220, 2019.
  32. K. Zhi, C. Pan, H. Ren, K. K. Chai, and M. Elkashlan, “Active RIS versus passive RIS: Which is superior with the same power budget?” IEEE Commun. Lett., vol. 26, no. 5, pp. 1150–1154, 2022.

Summary

We haven't generated a summary for this paper yet.