Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum Polygon Packing: The CG:SHOP Challenge 2024 (2403.16203v1)

Published 24 Mar 2024 in cs.CG and cs.DS

Abstract: We give an overview of the 2024 Computational Geometry Challenge targeting the problem \textsc{Maximum Polygon Packing}: Given a convex region $P$ in the plane, and a collection of simple polygons $Q_1, \ldots, Q_n$, each $Q_i$ with a respective value $c_i$, find a subset $S \subseteq {1, \ldots,n}$ and a feasible packing within $P$ of the polygons $Q_i$ (without rotation) for $i \in S$, maximizing $\sum_{i \in S} c_i$. Geometric packing problems, such as this, present significant computational challenges and are of substantial practical importance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. Constructing concise convex covers via clique covers. In Symposium on Computational Geometry (SoCG), volume 258 of LIPIcs, pages 66:1–66:9, 2023.
  2. Framework for er-completeness of two-dimensional packing problems. In Symposium on Foundations of Computer Science (FOCS), pages 1014–1021, 2020.
  3. S. R. Allen and J. Iacono. Packing identical simple polygons is NP-hard. arXiv preprint arXiv:1209.5307, 2012.
  4. Computing maximum polygonal packings in convex polygons using best-fit, genetic algorithms and ilps. In Symposium on Computational Geometry (SoCG), volume 293 of LIPIcs, pages 86:1–86:9, 2024.
  5. The geometry of nesting problems: A tutorial. European Journal of Operational Research, 184(2):397–415, 2008.
  6. A tutorial in irregular shape packing problems. Journal of the Operational Research Society, 60:S93–S105, 2009.
  7. K. Böröczky Jr. Finite Packing and Covering (Cambridge Tracts in Mathematics). Cambridge University Press, 2004.
  8. Research Problems in Discrete Geometry. Springer Science & Business Media, 2005.
  9. F. Chung and R. Graham. Efficient packings of unit squares in a large square. Discrete & Computational Geometry, 64(3):690–699, 2020.
  10. Conflict optimization for binary CSP applied to minimum partition into plane subgraphs and graph coloring. Journal of Experimental Algorithms, 28:1.2:1–1.2:13, 2023.
  11. Greedy and local search solutions to the minimum and maximum area. Journal of Experimental Algorithmics, 27:2.2:1–2.2:11, 2022.
  12. Shadoks approach to minimum partition into plane subgraphs. In Symposium on Computational Geometry (SoCG), volume 224 of LIPIcs, pages 71:1–71:8, 2022.
  13. Shadoks approach to low-makespan coordinated motion planning. In Symposium on Computational Geometry (SoCG), volume 189 of LIPIcs, pages 63:1–63:9, 2021.
  14. Shadoks approach to low-makespan coordinated motion planning. Journal of Experimental Algorithms, 27:3.2:1–3.2:17, 2022.
  15. G. D. da Fonseca. Shadoks approach to convex covering. In Symposium on Computational Geometry (SoCG), volume 258 of LIPIcs, pages 67:1–67:9, 2023.
  16. G. D. da Fonseca and Y. Gerard. Shadoks approach to knapsack polygonal packing. In Symposium on Computational Geometry (SoCG), volume 293 of LIPIcs, pages 83:1–83:9, 2024.
  17. K. Daniels and V. J. Milenkovic. Multiple translational containment, Part I: An approximate algorithm. Algorithmica, 19(1):148–182, 1997.
  18. Computing convex partitions for point sets in the plane: The CG:SHOP Challenge 2020, 2020.
  19. H. Dyckhoff and U. Finke. Cutting and packing in production and distribution: A typology and bibliography. Springer Science & Business Media, 1992.
  20. Computing low-cost convex partitions for planar point sets based on tailored decompositions. In Symposium on Computational Geometry (SoCG), volume 164 of LIPIcs, pages 85:1–85:11, 2020.
  21. 2-opt moves and flips for area-optimal polygonalizations. Journal of Experimental Algorithmics, 27:2.7:1–2.7:12, 2022.
  22. P. Erdös and R. L. Graham. On packing squares with equal squares. Journal of Combinatorial Theory, Series A, 19(1):119–123, 1975.
  23. G. Fejes Tóth. Recent progress on packing and covering. Contemporary Mathematics, 223:145–162, 1999.
  24. Computing area-optimal simple polygonalization. Journal of Experimental Algorithmics, 27:2.6:1–2.6:23, 2020.
  25. Area-optimal simple polygonalizations: The CG Challenge 2019. Journal of Experimental Algorithms, 27:1–12, 2022.
  26. Computing coordinated motion plans for robot swarms: The CG:SHOP Challenge 2021. Journal of Experimental Algorithms, 27:3.1:1–3.1:12, 2022.
  27. Minimum partition into plane subgraphs: The CG:SHOP challenge 2022. Journal of Experimental Algorithms, 28:1.9:1–1.9:13, 2022.
  28. Minimum coverage by convex polygons: The CG:SHOP Challenge 2023, 2023.
  29. S. P. Fekete and J. Schepers. A new exact algorithm for general orthogonal d-dimensional knapsack problems. In European Symposium on Algorithms (ESA), pages 144–156, 1997.
  30. S. P. Fekete and J. Schepers. On higher-dimensional packing I: Modeling. Technical Report 97–288, Universität zu Köln, 1997.
  31. S. P. Fekete and J. Schepers. On higher-dimensional packing II: Bounds. Technical Report 97–289, Universität zu Köln, 1997.
  32. S. P. Fekete and J. Schepers. On higher-dimensional packing III: Exact algorithms. Technical Report 97–290, Universität zu Köln, 1997.
  33. S. P. Fekete and J. Schepers. A general framework for bounds for higher-dimensional orthogonal packing problems. Mathematical Methods of Operations Research, 60:311–329, 2004.
  34. An exact algorithm for higher-dimensional orthogonal packing. Operations Research, 55(3):569–587, 2007.
  35. Local search with weighting schemes for the CG: SHOP 2022 competition. In Symposium on Computational Geometry (SoCG), volume 224 of LIPIcs, pages 73:1–73:6, 2022.
  36. T. Gensane and P. Ryckelynck. Improved dense packings of congruent squares in a square. Discrete & Computational Geometry, 34(1):97–109, 2005.
  37. Area-optimal polygonization using simulated annealing. Journal of Experimental Algorithmics, 27:2.3:1–2.3:17, 2022.
  38. A formal proof of the Kepler conjecture. Forum of Mathematics, Pi, 5:e2, 2017.
  39. T. C. Hales. A proof of the Kepler conjecture. Annals of Mathematics, 162(3):1065–1185, 2005.
  40. M. Held. Priority-driven nesting of irregular polygonal shapes within a convex polygonal container based on a hierarchical integer grid. In Symposium on Computational Geometry (SoCG), volume 293 of LIPIcs, pages 85:1–85:6, 2024.
  41. J. Kepler. Strena seu de nive sexangula, 1611.
  42. D. M. Krupke. Algorithm Engineering for Hard Problems in Computational Geometry. PhD thesis, May 2022.
  43. Irregular packing problems: A review of mathematical models. European Journal of Operational Research, 282(3):803–822, 2020.
  44. Optimal area polygonization by triangulation and ray-tracing. Journal of Experimental Algorithmics, 27:1–23, 2022.
  45. Packing squares into a square. Journal of Parallel and Distributed Computing, 10(3):271–275, 1990.
  46. Coordinated motion planning through randomized k-opt. In Symposium on Computational Geometry (SoCG), volume 189 of LIPIcs, pages 64:1–64:8, 2021.
  47. Two-dimensional packing problems: A survey. European Journal of Operational Research, 141(2):241–252, 2002.
  48. A general heuristic approach for maximum polygon packing. In Symposium on Computational Geometry (SoCG), volume 293 of LIPIcs, pages 84:1–84:9, 2024.
  49. A. Merino and A. Wiese. On the two-dimensional knapsack problem for convex polygons. ACM Transactions on Algorithms, 2020.
  50. V. Milenkovic. Multiple translational containment part ii: Exact algorithms. Algorithmica, 19(1):183–218, 1997.
  51. V. J. Milenkovic. Translational polygon containment and minimal enclosure using linear programming based restriction. In Symposium on Theory of Computing (STOC), pages 109–118, 1996.
  52. V. J. Milenkovic. Rotational polygon containment and minimum enclosure. In Symposium on Computational Geometry (SoCG), pages 1–8, 1998.
  53. V. J. Milenkovic. Rotational polygon containment and minimum enclosure using only robust 2d constructions. Computational Geometry, 13(1):3–19, 1999.
  54. V. J. Milenkovic and K. Daniels. Translational polygon containment and minimal enclosure using mathematical programming. International Transactions in Operational Research, 6(5):525–554, 1999.
  55. Computing low-cost convex partitions for planar point sets based on a memetic approach. In Symposium on Computational Geometry (SoCG), volume 164 of LIPIcs, pages 84:1–84:9, 2020.
  56. J. W. Moon and L. Moser. Some packing and covering theorems. In Colloquium Mathematicae, volume 17, pages 103–110, 1967.
  57. Heuristics for area optimal polygonizations. Journal of Experimental Algorithmics, 27:2.1:1–2.1:25, 2022.
  58. A. Schidler. Sat-based local search for plane subgraph partitions. In Symposium on Computational Geometry (SoCG), volume 224 of LIPIcs, pages 74:1–74:8, 2022.
  59. A. Schidler and S. Szeider. Sat-boosted tabu search for coloring massive graphs. Journal of Experimental Algorithms, 28:1.5:1–1.5:19, 2023.
  60. Conflict-based local search for minimum partition into plane subgraphs. In Symposium on Computational Geometry (SoCG), volume 224 of LIPIcs, pages 72:1–72:6, 2022.
  61. Cutting and packing problems: a categorized, application-orientated research bibliography. Journal of the Operational Research Society, 43(7):691–706, 1992.
  62. The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 5.5.2 edition, 2023.
  63. G. F. Tóth. Packing and covering. In Handbook of Discrete and Computational Geometry, Third Edition, pages 27–66. Chapman and Hall/CRC, 2017.
  64. H. Yang and A. Vigneron. A simulated annealing approach to coordinated motion planning. In Symposium on Computational Geometry (SoCG), volume 189 of LIPIcs, pages 65:1–65:9, 2021.
  65. H. Yang and A. Vigneron. Coordinated path planning through local search and simulated annealing. Journal of Experimental Algorithms, 27:3.3:1–3.3:14, 2022.
  66. Computing low-cost convex partitions for planar point sets with randomized local search and constraint programming. In Symposium on Computational Geometry (SoCG), volume 164 of LIPIcs, pages 83:1–83:7, 2020.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com