Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hardness of Packing, Covering and Partitioning Simple Polygons with Unit Squares (2404.09835v2)

Published 15 Apr 2024 in cs.CG

Abstract: We show that packing axis-aligned unit squares into a simple polygon $P$ is NP-hard, even when $P$ is an orthogonal and orthogonally convex polygon with half-integer coordinates. It has been known since the early 80s that packing unit squares into a polygon with holes is NP-hard~[Fowler, Paterson, Tanimoto, Inf. Process. Lett., 1981], but the version without holes was conjectured to be polynomial-time solvable more than two decades ago~[Baur and Fekete, Algorithmica, 2001]. Our reduction relies on a new way of reducing from \textsc{Planar-3SAT}. Interestingly, our geometric realization of a planar formula is non-planar. Vertices become rows and edges become columns, with crossings being allowed. The planarity ensures that all endpoints of rows and columns are incident to the outer face of the resulting drawing. We can then construct a polygon following the outer face that realizes all the logic of the formula geometrically, without the need of any holes. This new reduction technique proves to be general enough to also show hardness of two natural covering and partitioning problems, even when the input polygon is simple. We say that a polygon $Q$ is \emph{small} if $Q$ is contained in a unit square. We prove that it is NP-hard to find a minimum number of small polygons whose union is $P$ (covering) and to find a minimum number of pairwise interior-disjoint small polygons whose union is $P$ (partitioning), when $P$ is an orthogonal simple polygon with half-integer coordinates. This is the first partitioning problem known to be NP-hard for polygons without holes, with the usual objective of minimizing the number of pieces.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. “Tiling with Squares and Packing Dominos in Polynomial Time” In ACM Trans. Algorithms 19.3, 2023, pp. 30:1–30:28 DOI: 10.1145/3597932
  2. Mikkel Abrahamsen “Covering Polygons is Even Harder” In 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS 2021), 2021, pp. 375–386 DOI: 10.1109/FOCS52979.2021.00045
  3. Mikkel Abrahamsen, Anna Adamaszek and Tillmann Miltzow “The Art Gallery Problem is ∃\exists∃ℝℝ\mathbb{R}blackboard_R-complete” In J. ACM 69.1, 2022, pp. 4:1–4:70 DOI: 10.1145/3486220
  4. “Minimum Star Partitions of Simple Polygons in Polynomial Time” In Symposium on Foundations of Computer Science (FOCS 2024), 2024 DOI: 10.48550/ARXIV.2311.10631
  5. Mikkel Abrahamsen, Tillmann Miltzow and Nadja Seiferth “Framework for ER-Completeness of Two-Dimensional Packing Problems” In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020 IEEE, 2020, pp. 1014–1021 DOI: 10.1109/FOCS46700.2020.00098
  6. Mikkel Abrahamsen and Nichlas Langhoff Rasmussen “Partitioning a Polygon Into Small Pieces” In CoRR abs/2211.01359, 2022 DOI: 10.48550/ARXIV.2211.01359
  7. Pankaj K. Agarwal, Marc J. Kreveld and Subhash Suri “Label placement by maximum independent set in rectangles” In Comput. Geom. 11.3-4, 1998, pp. 209–218 DOI: 10.1016/S0925-7721(98)00028-5
  8. Sarah R. Allen and John Iacono “Packing identical simple polygons is NP-hard” In CoRR abs/1209.5307, 2012 DOI: 10.48550/arXiv.1209.5307
  9. Esther M. Arkin, Sándor P. Fekete and Joseph S.B. Mitchell “Approximation algorithms for lawn mowing and milling” In Comput. Geom. 17.1-2, 2000, pp. 25–50 DOI: 10.1016/S0925-7721(00)00015-8
  10. Esther M. Arkin, Martin Held and Christopher L. Smith “Optimization Problems Related to Zigzag Pocket Machining” In Algorithmica 26.2, 2000, pp. 197–236 DOI: 10.1007/S004539910010
  11. Takao Asano, Tetsuo Asano and Hiroshi Imai “Partitioning a polygonal region into trapezoids” In J. ACM 33.2, 1986, pp. 290–312 DOI: 10.1145/5383.5387
  12. Christoph Baur and Sándor P. Fekete “Approximation of Geometric Dispersion Problems” In Algorithmica 30.3, 2001, pp. 451–470 DOI: 10.1007/S00453-001-0022-X
  13. “Tiling Figures of the Plane with Two Bars” In Comput. Geom. 5, 1995, pp. 1–25 DOI: 10.1016/0925-7721(94)00015-N
  14. “Optimal Binary Space Partitions for Segments in the Plane” In Int. J. Comput. Geom. Appl. 22.3, 2012, pp. 187–206 DOI: 10.1142/S0218195912500045
  15. “Generalized Planar Matching” In J. Algorithms 11.2, 1990, pp. 153–184 DOI: 10.1016/0196-6774(90)90001-U
  16. Francine Berman, Frank Thomsons Leighton and Lawrence Snyder “Optimal tile salvage”, 1981 URL: https://docs.lib.purdue.edu/cstech/322
  17. Timothy M. Chan “A note on maximum independent sets in rectangle intersection graphs” In Inf. Process. Lett. 89.1, 2004, pp. 19–23 DOI: 10.1016/J.IPL.2003.09.019
  18. Bernard Chazelle “Approximation and decomposition of shapes” In Algorithmic and Geometric Aspects of Robotics 1, Advances in Robotics, 1987, pp. 145–185
  19. Bernard Chazelle and David P. Dobkin “Optimal convex decompositions” In Computational Geometry 2, Machine Intelligence and Pattern Recognition, 1985, pp. 63–133 DOI: 10.1016/B978-0-444-87806-9.50009-8
  20. “Decomposition algorithms in geometry” In Algebraic Geometry and its applications, 1994, pp. 419–447 DOI: 10.1007/978-1-4612-2628-4˙27
  21. “Efficient Packings of Unit Squares in a Large Square” In Discret. Comput. Geom. 64.3, 2020, pp. 690–699 DOI: 10.1007/s00454-019-00088-9
  22. “Separating point sets in polygonal environments” In 20th ACM Symposium on Computational Geometry (SoCG 2004), 2004, pp. 10–16 DOI: 10.1145/997817.997822
  23. Erik D. Demaine, Sándor P. Fekete and Robert J. Lang “Circle Packing for Origami Design Is Hard” In CoRR abs/1008.1224, 2010 DOI: 10.48550/arXiv.1008.1224
  24. “The Open Problems Project. Problem 56: Packing Unit Squares in a Simple Polygon” Accessed: 2023-12-21 URL: https://topp.openproblem.net/p56
  25. “Packing 2×2 unit squares into grid polygons is NP-complete” In 21st Annual Canadian Conference on Computational Geometry (CCCG 2009), 2009, pp. 33–36 URL: http://cccg.ca/proceedings/2009/cccg09_09.pdf
  26. “On packing squares with equal squares” In Journal of Combinatorial Theory, Series A 19.1 Elsevier, 1975, pp. 119–123 DOI: 10.1016/0097-3165(75)90099-0
  27. “Exploring and Triangulating a Region by a Swarm of Robots” In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2011), 2011, pp. 206–217 DOI: 10.1007/978-3-642-22935-0“˙18
  28. Sándor P. Fekete and Henk Meijer “The one-round Voronoi game replayed” In Comput. Geom. 30.2, 2005, pp. 81–94 DOI: 10.1016/J.COMGEO.2004.05.005
  29. Sándor P. Fekete and Joseph S.B. Mitchell “Terrain Decomposition and Layered Manufacturing” In Int. J. Comput. Geom. Appl. 11.6, 2001, pp. 647–668 DOI: 10.1142/S0218195901000687
  30. Sándor P. Fekete, Joseph S.B. Mitchell and Karin Beurer “On the Continuous Fermat-Weber Problem” In Oper. Res. 53.1, 2005, pp. 61–76 DOI: 10.1287/OPRE.1040.0137
  31. Robert J. Fowler, Mike Paterson and Steven L. Tanimoto “Optimal Packing and Covering in the Plane are NP-Complete” In Inf. Process. Lett. 12.3, 1981, pp. 133–137 DOI: 10.1016/0020-0190(81)90111-3
  32. Michael R. Garey and David S. Johnson “Computers and intractability: A Guide to the Theory of NP-Completeness” W. H. Freeman & Co., 1979
  33. “Improved Dense Packings of Congruent Squares in a Square” In Discret. Comput. Geom. 34.1, 2005, pp. 97–109 DOI: 10.1007/s00454-004-1129-z
  34. Dorit S. Hochbaum and Wolfgang Maass “Approximation Schemes for Covering and Packing Problems in Image Processing and VLSI” In J. ACM 32.1, 1985, pp. 130–136 DOI: 10.1145/2455.214106
  35. “Efficient Algorithms for Geometric Graph Search Problems” In SIAM J. Comput. 15.2, 1986, pp. 478–494 DOI: 10.1137/0215033
  36. J.Mark Keil “Polygon decomposition” In Handbook of computational geometry, 1999, pp. 491–518 DOI: 10.1016/B978-044482537-7/50012-7
  37. “Minimum Decompositions of Polygonal Objects” In Computational Geometry 2, Machine Intelligence and Pattern Recognition, 1985, pp. 197–216 DOI: 10.1016/B978-0-444-87806-9.50012-8
  38. Dania El-Khechen “Decomposing and packing polygons”, 2009 URL: https://spectrum.library.concordia.ca/id/eprint/976664/
  39. “Packing Segments in a Simple Polygon is APX-hard” http://eurocg15.fri.uni-lj.si/pub/eurocg15-book-of-abstracts.pdf In European Conference on Computational Geometry (EuroCG 2015), 2015, pp. 24–27
  40. David G. Kirkpatrick, Irina Kostitsyna and Valentin Polishchuk “Hardness Results for Two-Dimensional Curvature-Constrained Motion Planning” In 23rd Annual Canadian Conference on Computational Geometry (CCCG 2011), 2011 URL: http://www.cccg.ca/proceedings/2011/papers/paper99.pdf
  41. “Packing Squares into a Square” In J. Parallel Distributed Comput. 10.3, 1990, pp. 271–275 DOI: 10.1016/0743-7315(90)90019-L
  42. David Lichtenstein “Planar Formulae and Their Uses” In SIAM J. Comput. 11.2, 1982, pp. 329–343 DOI: 10.1137/0211025
  43. Andrzej Lingas “The Power of Non-Rectilinear Holes” In 9th International Colloquium on Automata, Languages, and Programming (ICALP 1982), 1982, pp. 369–383 DOI: 10.1007/BFB0012784
  44. “On compatible triangulations with a minimum number of Steiner points” In Theor. Comput. Sci. 835, 2020, pp. 97–107 DOI: 10.1016/J.TCS.2020.06.014
  45. “Minimum-weight triangulation is NP-hard” In J. ACM 55.2, 2008, pp. 11:1–11:29 DOI: 10.1145/1346330.1346336
  46. Joseph O’Rourke “Art Gallery Theorems and Algorithms” Oxford University Press, 1987
  47. Joseph O’Rourke and Kenneth J. Supowit “Some NP-hard polygon decomposition problems” In IEEE Trans. Inf. Theory 29.2, 1983, pp. 181–189 DOI: 10.1109/TIT.1983.1056648
  48. Joseph O’Rourke, Subash Suri and Csaba D. Tóth “Polygons” In Handbook of discrete and computational geometry, 2018, pp. 787–810 DOI: 10.1201/9781315119601
  49. Alexander Pilz “Planar 3-SAT with a Clause/Variable Cycle” In Discret. Math. Theor. Comput. Sci. 21.3, 2019 DOI: 10.23638/DMTCS-21-3-18
  50. “The 2×2222\times 22 × 2 Simple Packing Problem” In 23rd Annual Canadian Conference on Computational Geometry (CCCG 2011), 2011 URL: http://www.cccg.ca/proceedings/2011/papers/paper14.pdf
  51. Thomas C. Shermer “Recent results in art galleries” In Proc. IEEE 80.9, 1992, pp. 1384–1399 DOI: 10.1109/5.163407
  52. “On the hardness of unlabeled multi-robot motion planning” In Int. J. Robotics Res. 35.14, 2016, pp. 1750–1759 DOI: 10.1177/0278364916672311
Citations (4)

Summary

We haven't generated a summary for this paper yet.