Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Debiased Machine Learning when Nuisance Parameters Appear in Indicator Functions (2403.15934v2)

Published 23 Mar 2024 in econ.EM

Abstract: This paper studies debiased machine learning when nuisance parameters appear in indicator functions. An important example is maximized average welfare gain under optimal treatment assignment rules. For asymptotically valid inference for a parameter of interest, the current literature on debiased machine learning relies on Gateaux differentiability of the functions inside moment conditions, which does not hold when nuisance parameters appear in indicator functions. In this paper, we propose smoothing the indicator functions, and develop an asymptotic distribution theory for this class of models. The asymptotic behavior of the proposed estimator exhibits a trade-off between bias and variance due to smoothing. We study how a parameter which controls the degree of smoothing can be chosen optimally to minimize an upper bound of the asymptotic mean squared error. A Monte Carlo simulation supports the asymptotic distribution theory, and an empirical example illustrates the implementation of the method.

Summary

We haven't generated a summary for this paper yet.