Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Asymptotic Properties of Debiased Machine Learning Estimators (2411.01864v1)

Published 4 Nov 2024 in econ.EM

Abstract: This paper studies the properties of debiased machine learning (DML) estimators under a novel asymptotic framework, offering insights for improving the performance of these estimators in applications. DML is an estimation method suited to economic models where the parameter of interest depends on unknown nuisance functions that must be estimated. It requires weaker conditions than previous methods while still ensuring standard asymptotic properties. Existing theoretical results do not distinguish between two alternative versions of DML estimators, DML1 and DML2. Under a new asymptotic framework, this paper demonstrates that DML2 asymptotically dominates DML1 in terms of bias and mean squared error, formalizing a previous conjecture based on simulation results regarding their relative performance. Additionally, this paper provides guidance for improving the performance of DML2 in applications.

Summary

We haven't generated a summary for this paper yet.