Topological analysis and experimental control of transformations of domain walls in magnetic cylindrical nanowires (2403.15343v2)
Abstract: Topology is a powerful tool for categorizing magnetization textures by defining a topological index in both two-dimensional (2D) systems, such as thin films or curved surfaces, and in 3D bulk systems. In the emerging field of 3D nanomagnetism, both volume and surface topological numbers must be considered, requiring the identification of a proper global topological invariant to support categorization. Here we consider domain walls in cylindrical nanowires as an excellent playground for 3D nanomagnetic systems, excited by a charge current, that generates an OErsted field. We first provide experimental evidence of previously unreported domain-wall transformations of topology occurring at the nanosecond timescale. We investigate these transformations with micromagnetic simulations, tracking both bulk and surface topological signatures.We demonstrate a topological invariant combining both signatures, while the topological charge varies from bulk to surface during the dynamics. The experimental change of topology is reproduced when the pulse duration matches the timescale of the internal transformations of the wall, and the current is switched off before the transformation is complete. We expect that the topological categorization and dynamical exploitation apply to any 3D nanomagnetic system.
- N. D. Mermin, The topological theory of defects in ordered media, Rev. Mod. Phys. 51, 591 (1979a).
- R. Streubel, E. Y. Tsymbal, and P. Fischer, Magnetism in curved geometries, J. Appl. Phys. 129, 210902 (2021).
- R. Hertel, Computational micromagnetism of magnetization processes in nickel nanowires, J. Magn. Magn. Mater. 249, 251 (2002).
- A. Thiaville and Y. Nakatani, Spin dynamics in confined magnetic structures III (Springer, Berlin, 2006) Chap. Domain-wall dynamics in nanowires and nanostrips, pp. 161–205.
- F. Alouges and P. Jaisson, Convergence of a finite element discretization for the landau-lifshitz equations in micromagnetism, Mathematical Models and Methods in Applied Sciences 16, 299 (2006).
- F. Alouges, E. Kritsikis, and J.-C. Toussaint, A convergent finite element approximation for landau-lifschitz-gilbert equation, Physica B 407, 1345 (2012).
- http://feellgood.neel.cnrs.fr.
- S. Zhang and Z. Li, Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets, Phys. Rev. Lett. 93, 127204 (2004).
- A. d. Riz, Modélisation de la dynamique de parois de domaines dans des nanofils à section circulaire, Ph.D. thesis, Université Grenoble Alpes (2021).
- L. Landau and E. M. Lifschitz, On the theory of the dispertion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjetunion 8, 153 (1935).
- R. Feldtkeller, Mikromagnetisch stetige und unstetige magnetisirungsverteilungen, Z. Angew. Physik 19, 530 (1965).
- W. Döring, Point singularities in micromagnetism, J. Appl. Phys. 39, 1006 (1968).
- L. Hofmann, B. Rieck, and F. Sadlo, Visualization of 4d vector field topology, Computer Graphics Forum 37, 301 (2018).
- H.-B. Braun, Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons, Advances in Physics 61, 1 (2012).
- N. D. Mermin, The topological theory of defects in ordered media, Reviews of Modern Physics 51, 591 (1979b).
- J. H. C. Whitehead, An expression of hopf’s invariant as an integral, Proc. N.A.S. 33, 117 (1947).
- O. Tchernyshyov and G. W. Chern, Fractional vortices and composite domainwalls in flat nanomagnets, Phys. Rev. Lett. 95, 197204 (2005).
- R. Hertel and J. Kirschner, Magnetization reversal dynamics in nickel nanowires, Physica B 343, 206 (2004).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.