Scattering matrix approach to dynamical Sauter-Schwinger process: Spin- and helicity-resolved momentum distributions (2403.15206v1)
Abstract: Dynamical Sauter-Schwinger mechanism of electron-positron pair creation by a time-dependent electric field pulses is considered using the $S$-matrix approach and reduction formulas. They lead to the development of framework based on the solutions of the Dirac equation with the Feynman- or anti-Feynman boundary conditions. Their asymptotic properties are linked to the spin-resolved probability amplitudes of created pairs. The same concerns the helicity-resolved amplitudes. Most importantly, the aforementioned spin- or helicity-resolved amplitudes, when summed over spin or helicity configurations, reproduce the momentum distributions of created particles calculated with other methods that are typically used in this context. This does validate the current approach. It also allows us to investigate the vortex structures in momentum distributions of produced particles, as the method provides an access to the phase of the probability amplitude. As we also illustrate numerically, the method is applicable to arbitrary time-dependent electric fields with, in general, elliptical polarization. This proves its great flexibility.
- G. A. Mourou, T. Tajima, and S. V. Bulanov, Optics in the relativistic regime, Rev. Mod. Phys. 78, 309 (2006).
- J. Rafelski, L. P. Fulcher, and A. Klein, Fermions and bosons interacting with arbitrarily strong external fields, Phys. Rep. 38, 227 (1978).
- W. Greiner, B. Müller, and J. Rafelski, Quantum Electrodynamics of Strong Field (Springer, Berlin, 1980).
- R. A. Treumann, W. Baumjohann, and A. Balogh, The strongest magnetic fields in the universe: how strong can they become?, Front. Phys. 2, 59 (2014).
- F. Krausz and M. Ivanov, Attosecond physics, Rev. Mod. Phys. 81, 163 (2009).
- K. Krajewska, M. Twardy, and J. Z. Kamiński, Global phase and frequency comb structures in nonlinear Compton and Thomson scattering, Phys. Rev. A 89, 052123 (2014).
- E. Esarey, C. B. Schroeder, and W. P. Leemans, Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys. 81, 1229 (2009).
- A. Macchi, M. Borghesi, and M. Passoni, Ion acceleration by superintense laser-plasma interaction, Rev. Mod. Phys. 85, 751 (2013).
- C. Pellegrini, A. Marinelli, and S. Reiche, The physics of x-ray free-electron lasers, Rev. Mod. Phys. 88, 015006 (2016).
- E. Fradkin, D. Gitman, and S. Shvartsman, Quantum Electrodynamics with Unstable Vacuum (Springer, Berlin, 1991).
- V. Ritus, Quantum effects of the interaction of elementary particles with an intense electromagnetic field, J. Sov. Laser Res. 6, 497 (1985).
- G. Baur, K. Hencken, and D. Trautmann, Electron–positron pair production in ultrarelativistic heavy ion collisions, Phys. Rep. 453, 1 (2007).
- F. Ehlotzky, K. Krajewska, and J. Z. Kamiński, Fundamental processes of quantum electrodynamics in laser fields of relativistic power, Rep. Prog. Phys. 72, 046401 (2009).
- R. Ruffini, G. Vereshchagin, and S.-S. Xue, Electron–positron pairs in physics and astrophysics: From heavy nuclei to black holes, Phys. Rep. 487, 1 (2010).
- S. V. Popruzhenko and A. M. Fedotov, Dynamics and radiation of charged particles in ultra-intense laser fields, Phys.-Usp. 66, 460 (2023).
- G. Breit and J. A. Wheeler, Collision of two light quanta, Phys. Rev. 46, 1087 (1934).
- R. A. Neville and F. Rohrlich, Quantum Electrodynamics on Null Planes and Applications to Lasers, Phys. Rev. D 3, 1692 (1971).
- M. Boca and V. Florescu, Nonlinear Compton scattering with a laser pulse, Phys. Rev. A 80, 053403 (2009).
- D. Seipt and B. Kämpfer, Nonlinear Compton scattering of ultrashort intense laser pulses, Phys. Rev. A 83, 022101 (2011).
- F. Mackenroth and A. Di Piazza, Nonlinear Compton scattering in ultrashort laser pulses, Phys. Rev. A 83, 032106 (2011).
- K. Krajewska and J. Z. Kamiński, Compton process in intense short laser pulses, Phys. Rev. A 85, 062102 (2012a).
- T. Heinzl, A. Ilderton, and M. Marklund, Finite size effects in stimulated laser pair production, Phys. Lett. B 692, 250 (2010).
- K. Krajewska and J. Z. Kamiński, Breit-Wheeler process in intense short laser pulses, Phys. Rev. A 86, 052104 (2012b).
- S. Meuren, C. H. Keitel, and A. Di Piazza, Semiclassical picture for electron-positron photoproduction in strong laser fields, Phys. Rev. D 93, 085028 (2016).
- A. Di Piazza, Nonlinear Breit-Wheeler Pair Production in a Tightly Focused Laser Beam, Phys. Rev. Lett. 117, 213201 (2016).
- Y. Gao and S. Tang, Optimal photon polarization toward the observation of the nonlinear Breit-Wheeler pair production, Phys. Rev. D 106, 056003 (2022).
- S. Tang, Fully polarized nonlinear Breit-Wheeler pair production in pulsed plane waves, Phys. Rev. D 105, 056018 (2022).
- S. Tang and B. King, Pulse envelope effects in nonlinear Breit-Wheeler pair creation, Phys. Rev. D 104, 096019 (2021).
- P. A. M. Dirac, A theory of electrons and protons, Proc. R. Soc. London, Ser. A 126, 360 (1930a).
- P. A. M. Dirac, On the Annihilation of Electrons and Protons, Math. Proc. Cambridge Phil. Soc. 26, 361 (1930b).
- W. Heisenberg and H. Euler, Consequences of Dirac Theory of the Positron, Zeit. Phys. 98, 714 (1936).
- J. Schwinger, On Gauge Invariance and Vacuum Polarization, Phys. Rev. 82, 664 (1951).
- F. Sauter, Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs, Zeit. Phys. 69, 742 (1931).
- R. Schützhold, H. Gies, and G. Dunne, Dynamically Assisted Schwinger Mechanism, Phys. Rev. Lett. 101, 130404 (2008).
- S. Villalba-Chávez and C. Müller, Signatures of the Schwinger mechanism assisted by a fast-oscillating electric field, Phys. Rev. D 100, 116018 (2019a).
- I. A. Aleksandrov, G. Plunien, and V. M. Shabaev, Dynamically assisted Schwinger effect beyond the spatially-uniform-field approximation, Phys. Rev. D 97, 116001 (2018).
- C. Schubert, Perturbative quantum field theory in the string-inspired formalism, Phys. Rep. 355, 73 (2001).
- G. V. Dunne and C. Schubert, Worldline instantons and pair production in inhomogenous fields, Phys. Rev. D 72, 105004 (2005).
- G. Degli Esposti and G. Torgrimsson, Worldline instantons for the momentum spectrum of Schwinger pair production in spacetime dependent fields, Phys. Rev. D 107, 056019 (2023a).
- Q. S. T. Cheng and R. Grobe, Introductory review on quantum field theory with space–time resolution, Contemp. Phys. 51, 315 (2010).
- I. Białynicki-Birula, P. Górnicki, and J. Rafelski, Phase-space structure of the Dirac vacuum, Phys. Rev. D 44, 1825 (1991).
- J. Z. Kamiński, M. Twardy, and K. Krajewska, Diffraction at a time grating in electron-positron pair creation from the vacuum, Phys. Rev. D 98, 056009 (2018).
- H. Taya, Franz-Keldysh effect in strong-field QED, Phys. Rev. D 99, 056006 (2019).
- X.-G. Huang and H. Taya, Spin-dependent dynamically assisted Schwinger mechanism, Phys. Rev. D 100, 016013 (2019).
- C. Kohlfürst, Spin states in multiphoton pair production for circularly polarized light, Phys. Rev. D 99, 096017 (2019).
- F. J. Dyson, The S matrix in quantum electrodynamics, Phys. Rev. 75, 1736 (1949b).
- H. Lehmann, K. Symanzik, and W. Zimmermann, Zur formulierung quantisierter feldtheorien, Il Nuovo Cim. (1955-1965) 1, 205 (1955).
- H. Lehmann, K. Symanzik, and W. Zimmermann, On the formulation of quantized field theories, Il Nuovo Cim. (1955-1965) 6, 319 (1957).
- C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980).
- G. Degli Esposti and G. Torgrimsson, Worldline instantons for the momentum spectrum of Schwinger pair production in spacetime dependent fields, Phys. Rev. D 107, 056019 (2023b).
- J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).
- I. Białynicki-Birula and Z. Białynicka-Birula, Quantum Electrodynamics (Pergamon, Oxford, 1975).
- W. Bothe, Über die Kopplung zwischen elementaren Strahlungsvorgängen, Zeit. Phys. 37, 547 (1926).
- J. C. Garrison and R. Y. Chiao, Quantum Optics (Oxford, Oxford, 2008).
- M. L. Goldberger and K. M. Watson, Collision Theory (John Wiley & Sons, New York, 1964).
- R. G. Newton, Scattering Theory of Waves and Particles (Springer, New York, 1982).
- R. P. Feynman, Space-Time Approach to Quantum Electrodynamics, Phys. Rev. 76, 769 (1949a).
- R. P. Feynman, The Theory of Positrons, Phys. Rev. 76, 749 (1949b).
- I. Białynicki-Birula, M. Cieplak, and J. Kamiński, Theory of Quanta (Oxford, New York, 1992).
- I. Białynicki-Birula and Ł. Rudnicki, Time evolution of the QED vacuum in a uniform electric field: Complete analytic solution by spinorial decomposition, Phys. Rev. D 83, 065020 (2011).
- K. Krajewska and J. Z. Kamiński, Threshold effects in electron-positron pair creation from the vacuum: Stabilization and longitudinal versus transverse momentum sharing, Phys. Rev. A 100, 012104 (2019a).
- A. Blinne and H. Gies, Pair production in rotating electric fields, Phys. Rev. D 89, 085001 (2014).
- A. Blinne and E. Strobel, Comparison of semiclassical and Wigner function methods in pair production in rotating fields, Phys. Rev. D 93, 025014 (2016).
- Z. L. Li, Y. J. Li, and B. S. Xie, Momentum Vortices on Pairs Production by Two Counter-Rotating Fields, Phys. Rev. D 96, 076010 (2017).
- A. A. Grib, V. M. Mostepanenko, and V. M. Frolov, Particle creation from vacuum by a homogeneous electric field in the canonical formalism, Theor. Math. Phys. 13, 207 (1972).
- V. M. Mostepanenko and V. M. Frolov, Particle production from vacuum by homogeneous electric field with periodical time dependence, Yad. Fiz. 19, 885 (1974).
- V. G. Bagrov, D. M. Gitman, and S. M. Shvartsman, Concerning the production of electron-positron pairs from vacuum, Zh. Eksp. Teor. Fiz. 68, 392 (1975).
- A. A. Grib, S. G. Mamayev, and V. M. Mostepanenko, Vacuum quantum effects in strong fields (Friedmann Laboratory Publishing, St.Petersburg, 1994).
- S. P. Gavrilov and D. M. Gitman, Vacuum instability in external fields, Phys. Rev. D 53, 7162 (1996).
- K. Krajewska and J. Z. Kamiński, Unitary versus pseudounitary time evolution and statistical effects in the dynamical Sauter-Schwinger process, Phys. Rev. A 100, 062116 (2019b).
- M. J. A. Jansen and C. Müller, Strongly enhanced pair production in combined high- and low-frequency laser fields, Phys. Rev. A 88, 052125 (2013).
- S. Villalba-Chávez and C. Müller, Signatures of the Schwinger mechanism assisted by a fast-oscillating electric field, Phys. Rev. D 100, 116018 (2019b).
- E. Brezin and C. Itzykson, Pair Production in Vacuum by an Alternating Field, Phys. Rev. D 2, 1191 (1970).
- V. S. Popov, Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory), Phys.-Usp. 47, 855 (2004).
- P. A. M. Dirac, Quantised singularities in the electromagnetic field, Proc. R. Soc. London, Ser. A 133, 60 (1931).
- I. Białynicki-Birula, Z. Białynicka-Birula, and C. Śliwa, Motion of vortex lines in quantum mechanics, Phys. Rev. A 61, 032110 (2000).
- F. Cajiao Vélez, Generation of quantum vortices in photodetachment: The role of the ground-state wave function, Phys. Rev. A 104, 043116 (2021).
- F. Hebenstreit, R. Alkofer, and H. Gies, Schwinger pair production in space- and time-dependent electric fields: Relating the Wigner formalism to quantum kinetic theory, Phys. Rev. D 82, 105026 (2010).
- C. Kohlfürst, Effect of time-dependent inhomogeneous magnetic fields on the particle momentum spectrum in electron-positron pair production, Phys. Rev. D 101, 096003 (2020).
- H. Al-Naseri, J. Zamanian, and G. Brodin, Plasma dynamics and vacuum pair creation using the Dirac-Heisenberg-Wigner formalism, Phys. Rev. E 104, 015207 (2021).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.