Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 188 tok/s Pro
2000 character limit reached

dc atomtronic quantum interference device: quantum superposition of persistent-current states and a parity-protected qubit (2403.13930v1)

Published 20 Mar 2024 in quant-ph and cond-mat.quant-gas

Abstract: A generalized Bose-Hubbard model in a two-mode approximation is applied to study the rotational dynamics of a direct-current atomtronic quantum interference device. Modified values of on-site interaction and pair-tunneling parameters of the Hamiltonian, derived from the small-oscillation periods of the Josephson modes, are shown to provide an excellent agreement to the Gross-Pitaevskii simulation results for the whole rotational frequency range, reaching also the critical values of imbalance and current. This amounts to a full validation of the semiclassical approximation of the modified Hamiltonian, whose quantization is employed to investigate the quantum features of the stationary states. Focusing on the frequency interval where the potential energy presents two minima, it is shown that the central frequency, at which such minima are symmetric, yields an atom number parity-protected qubit with a maximum entanglement of both persistent-current states, similar to those of superconducting circuits threaded by a half-quantum of applied flux. Such a parity protection scheme survives within a small interval around the central frequency, which sets the minimum rotational frequency precision that should be required to implement the qubit. It is found that such a maximum admissible error in the frequency determination turns out to be inversely proportional to the qubit quality factor that measures the gap between the qubit energy levels and the following levels. It is shown that the chemical potential or condensate particle number could be employed as suitable control parameters to achieve the best trade-off between such qubit characteristics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. A. A. Zozulya and D. Z. Anderson, Phys. Rev. A 88, 043641 (2013).
  2. S. C. Caliga, C. J. E. Straatsma, and D. Z. Anderson, New J. Phys. 19, 013036 (2017).
  3. J. Clarke and A. I. Braginski, The SQUID Handbook (Wiley-VCH, Weinheim, 2004).
  4. Y. Sato and R. E. Packard, Rep. Prog. Phys. 75, 016401 (2012).
  5. C. Ryu, E. C. Samson, and M. G. Boshier, Nat. Commun. 11, 3338 (2020).
  6. D. Solenov and D. Mozyrsky, Phys. Rev. A 82, 061601(R) (2010).
  7. D. W. Hallwood, T. Ernst, and J. Brand, Phys. Rev. A 82, 063623 (2010).
  8. A. Nunnenkamp, A. M. Rey, and K. Burnett, Phys. Rev. A 84, 053604 (2011).
  9. A. Nunnenkamp, A. M. Rey, and K. Burnett, Phys. Rev. A 77, 023622 (2008).
  10. B. Doucot and L. B. Ioffe, Rep. Prog. Phys. 75, 072001 (2012).
  11. A. R. Klots and L. B. Ioffe, Phys. Rev. B 104, 144502 (2021).
  12. H. M. Cataldo, Phys. Rev. A 102, 023323 (2020).
  13. D. Ananikian and T. Bergeman, Phys. Rev. A 73, 013604 (2006).
  14. D. M. Jezek and H. M. Cataldo, Phys. Rev. A 104, 053319 (2021).
  15. L. Pitaevskii and S. Stringari, Phys. Rev. Lett. 87, 180402 (2001).
  16. Y. Castin and R. Dum, Eur. Phys. J. D 7, 399 (1999).
  17. F. Bloch, Phys. Rev. B 2, 109 (1970).
  18. H. M. Cataldo and D. M. Jezek, Phys. Rev. A 84, 013602 (2011).
  19. M. Nigro, P. Capuzzi, and D. M. Jezek, J. Phys. B: At. Mol. Opt. Phys. 53, 025301 (2020).
  20. D. M. Jezek, P. Capuzzi, and H. M. Cataldo, Phys. Rev. A 87, 053625 (2013).
  21. A. A. Golubov, M. Y. Kupriyanov, and E. Il’ichev, Rev. Mod. Phys. 76, 411 (2004).
  22. Y. Sato, C. R. Phys. 15, 898 (2014).
  23. S. Narayana and Y. Sato, Phys. Rev. Lett. 106, 255301 (2011).
  24. R. Gross, A. Marx, and F. Deppe, Applied Superconductivity: Josephson Effect and Superconducting Electronics (Walter De Gruyter, Berlin, 2016).
  25. F. M. Arscott, Periodic Differential Equations (Pergamon Press, 1964).
  26. F. M. Arscott, Proc. Roy. Soc. Edinburgh Sect. A 67, 265 (1967).
  27. K. M. Urwin and F. M. Arscott, Proc. Roy. Soc. Edinburgh Sect. A 69, 28 (1970).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com