Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Nonequilibrium quantum heat transport between structured environments (2403.13904v2)

Published 20 Mar 2024 in cond-mat.mes-hall and quant-ph

Abstract: We apply the hierarchical equations of motion technique to analyzing nonequilibrium heat transport in a spin-boson type model, whereby heat transfer through a central spin is mediated by an intermediate pair of coupled harmonic oscillators. The coupling between each pair of oscillators is shown to introduce a localized gap into the effective spectral densities characterizing the system-oscillator-reservoir interactions. Compared to the case of a single mediating oscillator, we find the heat current to be drastically modified at weak system-bath coupling. In particular, a second-order treatment fails to capture the correct steady-state behavior in this regime, which stems from the $\lambda4$-scaling of the energy transfer rate to lowest order in the coupling strength $\lambda$. This leads naturally to a strong suppression in the steady-state current in the asymptotically weak coupling limit. On the other hand, the current noise follows the same scaling as in the single oscillator case in accordance with the fluctuation-dissipation theorem. Additionally, we find the heat current to be consistent with Fourier's law even at large temperature bias. Our analysis highlights a novel mechanism for controlling heat transport in nanoscale systems based on tailoring the spectral properties of thermal environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. Segal D and Nitzan A 2005 Phys. Rev. Lett. 94 034301
  2. Segal D and Nitzan A 2005 J. Chem. Phys. 122
  3. Ruokola T, Ojanen T and Jauho A P 2009 Phys. Rev. B 79 144306
  4. Newman D, Mintert F and Nazir A 2017 Phys. Rev. E 95 032139
  5. Wiedmann M, Stockburger J T and Ankerhold J 2020 New Journal of Physics 22 033007
  6. Latune C L, Pleasance G and Petruccione F 2023 Phys. Rev. Applied 20 024038
  7. Levy A and Kosloff R 2012 Phys. Rev. Lett. 108 070604
  8. Ivander F, Anto-Sztrikacs N and Segal D 2022 Phys. Rev. E 105 034112
  9. Dubi Y and Di Ventra M 2011 Rev. Mod. Phys. 83 131–155
  10. Pekola J P 2015 Nat. Phys. 11 118–123
  11. Landi G T, Poletti D and Schaller G 2022 Rev. Mod. Phys. 94 045006
  12. Segal D 2006 Phys. Rev. B 73 205415
  13. Segal D and Nitzan A 2006 Phys. Rev. E 73 026109
  14. Gilmore J and McKenzie R H 2005 J. Phys.: Condens. Matter 17 1735–1746
  15. Agarwalla B K and Segal D 2017 New J. Phys. 19 043030
  16. Simine L and Segal D 2013 J. Chem. Phys. 138 214111
  17. Aurell E 2018 Phys. Rev. E 97 062117
  18. Aurell E, Donvil B and Mallick K 2020 Phys. Rev. E 101 052116
  19. Anto-Sztrikacs N and Segal D 2021 New J. Phys. 23 063036
  20. Anto-Sztrikacs N, Ivander F and Segal D 2022 J. Chem. Phys. 156 214107
  21. Kato A and Tanimura Y 2015 J. Chem. Phys. 143 064107
  22. Kato A and Tanimura Y 2016 J. Chem. Phys. 145 224105
  23. Cerrillo J, Buser M and Brandes T 2016 Phys. Rev. B 94 214308
  24. Song L and Shi Q 2017 Phys. Rev. B 95 064308
  25. Chen R 2023 New J. Phys. 25 033035
  26. Breuer H P and Petruccione F 2002 The theory of open quantum systems (New York: Oxford University Press)
  27. Nicolin L and Segal D 2011 J. Chem. Phys. 135 164106
  28. Segal D 2014 Phys. Rev. E 90 012148
  29. Weiss U 2011 Quantum Dissipative Systems (World Scientific)
  30. Wang C, Ren J and Cao J 2015 Sci. Rep. 5 11787
  31. Wang C, Ren J and Cao J 2017 Phys. Rev. A 95 023610
  32. Esposito M, Harbola U and Mukamel S 2009 Rev. Mod. Phys. 81 1665–1702
  33. Palm T and Nalbach P 2018 J. Chem. Phys. 149 214103
  34. Aurell E and Tuziemski J 2021 The vernon transform and its use in quantum thermodynamics (Preprint 2103.13255)
  35. Yamamoto T and Kato T 2021 J. Phys.: Condens. Matter 33 395303
  36. Tanimura Y and Kubo R 1989 J. Phys. Soc. Japan. 58 101–114
  37. Tanimura Y 1990 Phys. Rev. A 41 6676–6687
  38. Ishizaki A and Tanimura Y 2005 J. Phys. Soc. Japan 74 3131–3134
  39. Tanimura Y 2006 J. Phys. Soc. Japan 75 082001
  40. Ishizaki A and Fleming G R 2009 J. Chem. Phys. 130 234111
  41. Tanimura Y 2020 J. Chem. Phys. 153 020901
  42. Caldeira A and Leggett A 1983 Physica A 121 587–616
  43. Feynman R and Vernon F 1963 Ann. Phys-new. York. 24 118–173
  44. Garg A, Onuchic J N and Ambegaokar V 1985 J. Chem. Phys. 83 4491–4503
  45. Iles-Smith J, Lambert N and Nazir A 2014 Phys. Rev. A 90 032114
  46. Esposito M, Lindenberg K and den Broeck C V 2010 New J. Phys. 12 013013
  47. Trushechkin A 2019 Lobachevskii J. Math. 40 1606–1618
  48. Redfield A 1965 The Theory of Relaxation Processes vol 1 Advances in Magnetic Resonance (Elsevier) pp 1–32
  49. Mitchison M T and Plenio M B 2018 New J. Phys. 20 033005
  50. Johansson J, Nation P and Nori F 2013 Comput. Phys. Commun. 184 1234–1240
  51. Ziman J M 1969 Elements of Advanced Quantum Theory (Cambridge: Cambridge University Press)
  52. Parr R G and Yang W 1989 Density-Functional Theory of Atoms and Molecules (New York: Oxford University Press)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube