Extremality of stabilizer states (2403.13632v1)
Abstract: We investigate the extremality of stabilizer states to reveal their exceptional role in the space of all $n$-qubit/qudit states. We establish uncertainty principles for the characteristic function and the Wigner function of states, respectively. We find that only stabilizer states achieve saturation in these principles. Furthermore, we prove a general theorem that stabilizer states are extremal for convex information measures invariant under local unitaries. We explore this extremality in the context of various quantum information and correlation measures, including entanglement entropy, conditional entropy and other entanglement measures. Additionally, leveraging the recent discovery that stabilizer states are the limit states under quantum convolution, we establish the monotonicity of the entanglement entropy and conditional entropy under quantum convolution. These results highlight the remarkable information-theoretic properties of stabilizer states. Their extremality provides valuable insights into their ability to capture information content and correlations, paving the way for further exploration of their potential in quantum information processing.
- D. Gottesman, Stabilizer codes and quantum error correction, arXiv:quant-ph/9705052 (1997).
- P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52, R2493 (1995).
- A. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303, 2 (2003).
- Suppressing quantum errors by scaling a surface code logical qubit, Nature 614, 676 (2023).
- D. Gottesman, The Heisenberg representation of quantum computers (1998) pp. 32–43, arXiv:quant-ph/9807006 .
- S. Bravyi and D. Gosset, Improved classical simulation of quantum circuits dominated by Clifford gates, Phys. Rev. Lett. 116, 250501 (2016).
- S. Bravyi, G. Smith, and J. A. Smolin, Trading classical and quantum computational resources, Phys. Rev. X 6, 021043 (2016).
- K. Bu and D. E. Koh, Classical simulation of quantum circuits by half Gauss sums, Commun. Math. Phys. 390, 471 (2022).
- X. Gao and L. Duan, Efficient classical simulation of noisy quantum computation, arXiv:1810.03176 (2018).
- K. Bu and D. E. Koh, Efficient classical simulation of Clifford circuits with nonstabilizer input states, Phys. Rev. Lett. 123, 170502 (2019).
- D. E. Koh, Further extensions of Clifford circuits and their classical simulation complexities, Quantum Information & Computation 17, 0262 (2017).
- A. S. Holevo, M. Sohma, and O. Hirota, Capacity of quantum Gaussian channels, Phys. Rev. A 59, 1820 (1999).
- A. S. Holevo and R. F. Werner, Evaluating capacities of bosonic Gaussian channels, Phys. Rev. A 63, 032312 (2001).
- F. Grosshans and N. J. Cerf, Continuous-variable quantum cryptography is secure against non-Gaussian attacks, Phys. Rev. Lett. 92, 047905 (2004).
- J. Eisert and M. M. Wolf, Gaussian quantum channels, arXiv preprint quant-ph/0505151 (2005).
- M. M. Wolf, G. Giedke, and J. I. Cirac, Extremality of Gaussian quantum states, Phys. Rev. Lett. 96, 080502 (2006).
- K. Bu, W. Gu, and A. Jaffe, Quantum entropy and central limit theorem, Proceedings of the National Academy of Sciences 120, e2304589120 (2023a).
- K. Bu, W. Gu, and A. Jaffe, Discrete quantum Gaussians and central limit theorem, arXiv:2302.08423 (2023b).
- K. Bu, W. Gu, and A. Jaffe, Entropic quantum central limit theorem and quantum inverse sumset theorem, arXiv:2401.14385 (2024a).
- Z. Liu, A. Wozniakowski, and A. M. Jaffe, Quon 3d language for quantum information, PNAS 114, 2497 (2017).
- D. Gross, Hudson’s theorem for finite-dimensional quantum systems, J. Math. Phys. 47, 122107 (2006).
- A. Montanaro and T. J. Osborne, Quantum Boolean functions, Chicago Journal of Theoretical Computer Science 2010 (2010).
- R. J. Garcia, K. Bu, and A. Jaffe, Resource theory of quantum scrambling, Proceedings of the National Academy of Sciences 120, e2217031120 (2023).
- R. Renner, Security of quantum key distribution, arXiv:quant-ph/0512258 (2005).
- W. Heisenberg, Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik, Zeitschrift für Physik 43, 172 (1927).
- N. J. Cerf and C. Adami, Negative entropy and information in quantum mechanics, Phys. Rev. Lett. 79, 5194 (1997).
- R. Konig, R. Renner, and C. Schaffner, The operational meaning of min-and max-entropy, IEEE Transactions on Information theory 55, 4337 (2009).
- M. Horodecki, J. Oppenheim, and A. Winter, Partial quantum information, Nature 436, 673 (2005).
- P. Brown, H. Fawzi, and O. Fawzi, Computing conditional entropies for quantum correlations, Nature communications 12, 575 (2021).
- M. Tomamichel, Quantum information processing with finite resources: mathematical foundations (2015).
- G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002).
- M. Christandl and A. Winter, “squashed entanglement”: an additive entanglement measure, Journal of mathematical physics 45, 829 (2004).
- K. Bu, W. Gu, and A. Jaffe, Stabilizer testing and magic entropy, arXiv:2306.09292 (2023c).
- K. Bu and A. Jaffe, Magic can enhance the quantum capacity of channels, arXiv:2401.12105 (2024).
- K. Bu, A. Jaffe, and Z. Wei, Magic class and the convolution group, arXiv:2402.05780 (2024c).
- A. B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2d field theory, JETP lett 43, 730 (1986).
- J. L. Cardy, Is there a c-theorem in four dimensions?, Physics Letters B 215, 749 (1988).
- H. Osborn, Derivation of a four dimensional c-theorem for renormaliseable quantum field theories, Physics Letters B 222, 97 (1989).
- Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, Journal of High Energy Physics 2011, 1 (2011).
- T. Nishioka, Entanglement entropy: Holography and renormalization group, Rev. Mod. Phys. 90, 035007 (2018).
- M.-D. Choi, Completely positive linear maps on complex matrices, Linear Algebra and its Application 10, 285 (1975).
- A. Jamiołkowski, Linear transformations which preserve trace and positive semidefiniteness of operators, Rep. Math. Phys. 3, 275–278 (1972).
- T. Tao, An uncertainty principle for cyclic groups of prime order, arXiv preprint math/0308286 (2003).
- D. L. Donoho and P. B. Stark, Uncertainty principles and signal recovery, SIAM Journal on Applied Mathematics 49, 906 (1989).
- K. T. Smith, The uncertainty principle on groups, SIAM Journal on Applied Mathematics 50, 876 (1990).
- C. Jiang, Z. Liu, and J. Wu, Noncommutative uncertainty principles, Journal of Functional Analysis 270, 264 (2016).