Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constraints on Multipartite Quantum Entropies (1810.12845v1)

Published 30 Oct 2018 in quant-ph, cs.IT, and math.IT

Abstract: The von Neumann entropy plays a vital role in quantum information theory. The von Neumann entropy determines, e.g., the capacities of quantum channels. Also, entropies of composite quantum systems are important for future quantum networks, and their characterization is related to the quantum marginal problem. Furthermore, they play a role in quantum thermodynamics. In this thesis the set of quantum entropies of multipartite quantum systems is studied. The problem of its characterization is not new -- however, progress has been sparse, indicating that the problem might be hard and that new methods might be needed. Here, a variety of different and complementary approaches are taken. First, I look at global properties. It is known that the von Neumann entropy region -- just like its classical counterpart -- forms a convex cone. I describe the symmetries of this cone and highlight geometric similarities and differences to the classical entropy cone. In a different approach, I utilize the local geometric properties of extremal rays of a cone. I show that quantum states whose entropy lies on such an extremal ray of the quantum entropy cone have a very simple structure. As the set of all quantum states is very complicated, I look at a simple subset called stabilizer states. I improve on previously known results by showing that under a technical condition on the local dimension, entropies of stabilizer states respect an additional class of information inequalities that is valid for random variables from linear codes. In a last approach I find a representation-theoretic formulation of the classical marginal problem simplifying the comparison with its quantum mechanical counterpart. This novel correspondence yields a simplified formulation of the group characterization of classical entropies (IEEE Trans. Inf. Theory, 48(7):1992-1995, 2002) in purely combinatorial terms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Christian Majenz (32 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.