GKZ hypergeometric systems of the four-loop vacuum Feynman integrals (2403.13025v2)
Abstract: Basing on Mellin-Barnes representations and Miller's transformation, we present the Gel'fand-Kapranov-Zelevinsky (GKZ) hypergeometric systems of 4-loop vacuum Feynman integrals with arbitrary masses. Through the GKZ hypergeometric systems, the analytical hypergeometric solutions of 4-loop vacuum Feynman integrals with arbitrary masses can be obtained in neighborhoods of origin including infinity. The analytical expressions of Feynman integrals can be formulated as a linear combination of the fundamental solution systems in certain convergent region, which the combination coefficients can be determined by the integral at some regular singularities, the Mellin-Barnes representation of the integral, or some mathematical methods.
- G. Heinrich, Phys. Rept. 922 (2021) 1-69.
- A. Denner, Fortschr. Phys. 41 (1993) 307-420.
- D.J. Broadhurst, Z. Phys. C 54 (1992) 599.
- L.V. Avdeev, Comput. Phys. Commun. 98 (1996) 15.
- D.J. Broadhurst, Eur. Phys. J. C 8 (1999) 311.
- M.Y. Kalmykov, Nucl. Phys. B 718 (2005) 276.
- M.Y. Kalmykov, JHEP 04 (2006) 056.
- A. Freitas, JHEP 11 (2016) 145.
- S.P. Martin, Phys. Rev. D 96 (2017) 096005.
- S. Laporta, Phys. Lett. B 549 (2002) 115.
- Y. Schröder, Nucl. Phys. B (Proc. Suppl.) 116 (2003) 402-406.
- A.I. Davydychev, J. Math. Phys. 32 (1991) 1052.
- A.I. Davydychev, J. Phys. A 25 (1992) 5587.
- A.I. Davydychev, J. Math. Phys. 33 (1992) 358.
- V.A. Smirnov, Phys. Lett. B 460 (1999) 397-404.
- J.B. Tausk, Phys. Lett. B 469 (1999) 225-234.
- A.I. Davydychev, Phys. Rev. D 61 (2000) 087701.
- A.I. Davydychev, Nucl. Instrum. Meth. A 559 (2006) 293.
- E. Nasrollahpoursamami, arXiv:1605.04970 [math-ph].
- I.M. Gel’fand, Soviet Math. Dokl. 33 (1986) 573.
- L. Cruz, JHEP 12 (2019) 123.
- R. Klausen, JHEP 04 (2020) 121.
- T. Oaku, Adv. Appl. Math. 19 (1997) 61.
- U. Walther, J. Pure Appl. Algebra 139 (1999) 303.
- W. Miller Jr., J. Math. Mech. 17 (1968) 1143.
- W. Miller Jr., SIAM. J. Math. Anal. 3 (1972) 31.
- M. Hidding, Comput. Phys. Commun. 269 (2021) 108125.
- M. Borinsky, Ann. Inst. H. Poincare Comb. Phys. Interact. 10 (2023) 635-685.
- R.P. Klausen, JHEP 02 (2022) 004.
- U. Walther, Lett. Math. Phys. 112 (2022) 120.
- H. J. Munch, PoS LL2022 (2022) 042.
- R. P. Klausen, arXiv:2302.13184 [hep-th].
- H. J. Munch, arXiv:2401.00891 [hep-th].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.