Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 88 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 220 tok/s Pro
2000 character limit reached

Spectral gap of random hyperbolic surfaces (2403.12576v1)

Published 19 Mar 2024 in math.GT and math.SP

Abstract: Let $X$ be a closed, connected, oriented surface of genus $g$, with a hyperbolic metric chosen at random according to the Weil--Petersson measure on the moduli space of Riemannian metrics. Let $\lambda_1=\lambda_1(X)$ bethe first non-zero eigenvalue of the Laplacian on $X$ or, in other words, the spectral gap.In this paper we give a full road-map to prove that for arbitrarily small~$\alpha>0$,\begin{align*} \Pwp{\lambda_1 \leq \frac{1}{4} - \alpha2 } \Lim_{g\To +\infty} 0.\end{align*}The full proofs are deferred to separate papers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. A high-genus asymptotic expansion of Weil–Petersson volume polynomials. Journal of Mathematical Physics, 63(4):043502, 2022.
  2. Friedman–Ramanujan functions in random hyperbolic geometry and application to spectral gaps. arxiv:2304.02678, 2023.
  3. Friedman–Ramanujan functions in random hyperbolic geometry and application to spectral gaps II. In preparation, 2024.
  4. A Moebius inversion formula to discard tangled hyperbolic surfaces. arxiv:2401.01601, 2024.
  5. Nicolas Bergeron. The Spectrum of Hyperbolic Surfaces. Universitext. Springer International Publishing, Cham, 2016.
  6. Charles Bordenave. A new proof of Friedman’s second eigenvalue theorem and its extension to random lifts. Annales Scientifiques de l’École Normale Supérieure. Quatrième Série, 53(6):1393–1439, 2020.
  7. Peter Buser. Geometry and Spectra of Compact Riemann Surfaces. Birkhäuser, Boston, 1992.
  8. Joel Friedman. A proof of Alon’s second eigenvalue conjecture. Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 720–724, 2003.
  9. Near optimal spectral gaps for hyperbolic surfaces. Annals of Mathematics (to appear), 2021.
  10. Heinz Huber. Über den ersten Eigenwert des Laplace-Operators auf kompakten Riemannschen Flächen. Commentarii mathematici Helvetici, 49:251–259, 1974.
  11. Towards optimal spectral gaps in large genus. arXiv:2103.07496, 2021.
  12. Maryam Mirzakhani. Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces. Inventiones Mathematicae, 167(1):179–222, 2007.
  13. Maryam Mirzakhani. Growth of Weil–Petersson volumes and random hyperbolic surfaces of large genus. Journal of Differential Geometry, 94(2):267–300, 2013.
  14. Lengths of closed geodesics on random surfaces of large genus. Commentarii Mathematici Helvetici, 94(4):869–889, 2019.
  15. The tangle-free hypothesis on random hyperbolic surfaces. International Mathematics Research Notices, rnab160, 2021.
  16. Atle Selberg. Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. The Journal of the Indian Mathematical Society, 20:47–87, 1956.
  17. Random hyperbolic surfaces of large genus have first eigenvalues greater than 316−ϵ316italic-ϵ\frac{3}{16}-\epsilondivide start_ARG 3 end_ARG start_ARG 16 end_ARG - italic_ϵ. Geometric and Functional Analysis, 32(2):340–410, 2022.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com