Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Kimi K2 164 tok/s Pro
2000 character limit reached

Hydrodynamics, anomaly inflow and bosonic effective field theory (2403.12360v2)

Published 19 Mar 2024 in hep-th and cond-mat.str-el

Abstract: Euler hydrodynamics of perfect fluids can be viewed as an effective bosonic field theory. In cases when the underlying microscopic system involves Dirac fermions, the quantum anomalies should be properly described. In 1+1 dimensions the action formulation of hydrodynamics at zero temperature is reconsidered and shown to be equal to standard field-theory bosonization. Furthermore, it can be derived from a topological gauge theory in one extra dimension, which identifies the fluid variables through the anomaly inflow relations. Extending this framework to 3+1 dimensions yields an effective field theory/hydrodynamics model, capable of elucidating the mixed axial-vector and axial-gravitational anomalies of Dirac fermions. This formulation provides a platform for bosonization in higher dimensions. Moreover, the connection with 4+1 dimensional topological theories suggests some generalizations of fluid dynamics involving additional degrees of freedom.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. A. Y. Alekseev, V. V. Cheianov and J. Frohlich, Universality of transport properties in equilibrium, Goldstone theorem and chiral anomaly, Phys. Rev. Lett. 81, 3503 (1998), 10.1103/PhysRevLett.81.3503, cond-mat/9803346.
  2. Effective field theories for topological insulators by functional bosonization, Phys. Rev. B 87(8), 085132 (2013), 10.1103/PhysRevB.87.085132, 1210.4305.
  3. A. Cappelli, E. Randellini and J. Sisti, Three-dimensional Topological Insulators and Bosonization, JHEP 05, 135 (2017), 10.1007/JHEP05(2017)135, 1612.05212.
  4. E. Fradkin, Disorder Operators and their Descendants, J. Statist. Phys. 167, 427 (2017), 10.1007/s10955-017-1737-7, 1610.05780.
  5. A. Kapustin and R. Thorngren, Fermionic SPT phases in higher dimensions and bosonization, JHEP 10, 080 (2017), 10.1007/JHEP10(2017)080, 1701.08264.
  6. Y.-A. Chen and A. Kapustin, Bosonization in three spatial dimensions and a 2-form gauge theory, Phys. Rev. B 100(24), 245127 (2019), 10.1103/PhysRevB.100.245127, 1807.07081.
  7. F. Andreucci, A. Cappelli and L. Maffi, Quantization of a self-dual conformal theory in (2 + 1) dimensions, JHEP 02, 116 (2020), 10.1007/JHEP02(2020)116, 1912.04125.
  8. A. Cappelli, L. Maffi and R. Villa, to appear (2024).
  9. D. T. Son and P. Surowka, Hydrodynamics with Triangle Anomalies, Phys. Rev. Lett. 103, 191601 (2009), 10.1103/PhysRevLett.103.191601, 0906.5044.
  10. R. Loganayagam, Anomaly induced transport in arbitrary dimensions, arXiv preprint arXiv:1106.0277 (2011).
  11. Effective actions for anomalous hydrodynamics, JHEP 03, 034 (2014), 10.1007/JHEP03(2014)034, 1312.0610.
  12. K. Jensen, R. Loganayagam and A. Yarom, Anomaly inflow and thermal equilibrium, JHEP 05, 134 (2014), 10.1007/JHEP05(2014)134, 1310.7024.
  13. S. Dubovsky, L. Hui and A. Nicolis, Effective field theory for hydrodynamics: Wess-Zumino term and anomalies in two spacetime dimensions, Phys. Rev. D 89(4), 045016 (2014), 10.1103/PhysRevD.89.045016, 1107.0732.
  14. G. M. Monteiro, A. G. Abanov and V. Nair, Hydrodynamics with gauge anomaly: variational principle and Hamiltonian formulation, Phys. Rev. D 91, 125033 (2015).
  15. V. P. Nair, Topological terms and diffeomorphism anomalies in fluid dynamics and sigma models, Phys. Rev. D 103(8), 085017 (2021), 10.1103/PhysRevD.103.085017, 2008.11260.
  16. Axial-Current Anomaly in Euler Fluids, Phys. Rev. Lett. 128(5), 054501 (2022), 10.1103/PhysRevLett.128.054501, 2110.11480.
  17. Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011), 10.1103/RevModPhys.83.1057.
  18. A. W. W. Ludwig, Topological phases: classification of topological insulators and superconductors of non-interacting fermions, and beyond, Physica Scripta Volume T 168, 014001 (2016), 10.1088/0031-8949/2015/T168/014001, 1512.08882.
  19. E. Witten, Three lectures on topological phases of matter, Riv. Nuovo Cim. 39(7), 313 (2016), 10.1393/ncr/i2016-10125-3, 1510.07698.
  20. X.-G. Wen, Choreographed entanglement dances: Topological states of quantum matter, Science 363(6429), eaal3099 (2019), 10.1126/science.aal3099, https://www.science.org/doi/pdf/10.1126/science.aal3099.
  21. R. Arouca, A. Cappelli and H. Hansson, Quantum field theory anomalies in condensed matter physics, SciPost Physics Lecture Notes p. 062 (2022).
  22. X. G. Wen, Quantum field theory of many-body systems: From the origin of sound to an origin of light and electrons, Oxford University Press (2004).
  23. E. Fradkin, Field Theories of Condensed Matter Physics, Cambridge University Press, 2 edn., 10.1017/CBO9781139015509 (2013).
  24. X.-L. Qi, T. Hughes and S.-C. Zhang, Topological Field Theory of Time-Reversal Invariant Insulators, Phys. Rev. B 78, 195424 (2008), 10.1103/PhysRevB.78.195424, 0802.3537.
  25. Topological BF field theory description of topological insulators, Annals Phys. 326, 1515 (2011), 10.1016/j.aop.2010.12.011, 1011.3485.
  26. Braiding Statistics and Link Invariants of Bosonic/Fermionic Topological Quantum Matter in 2+1 and 3+1 dimensions, Annals Phys. 384, 254 (2017), 10.1016/j.aop.2017.06.019, 1612.09298.
  27. Theory of oblique topological insulators, SciPost Phys. 14(2), 023 (2023), 10.21468/SciPostPhys.14.2.023, 2206.07725.
  28. J. Fröhlich, Gauge Invariance and Anomalies in Condensed Matter Physics (2023), 10.1063/5.0135142, 2303.14741.
  29. D. T. Son, Is the Composite Fermion a Dirac Particle?, Phys. Rev. X 5(3), 031027 (2015), 10.1103/PhysRevX.5.031027, 1502.03446.
  30. A Duality Web in 2+1 Dimensions and Condensed Matter Physics, Annals Phys. 374, 395 (2016), 10.1016/j.aop.2016.08.007, 1606.01989.
  31. Thermal transport, geometry, and anomalies, Phys. Rept. 977, 1 (2022), 10.1016/j.physrep.2022.06.002, 2110.05471.
  32. Anomalies in fluid dynamics: flows in a chiral background via variational principle, Journal of Physics A: Mathematical and Theoretical 55(41), 414001 (2022), 10.1088/1751-8121/ac9202.
  33. Quantum spin hall effect in graphene, Physical review letters 95(22), 226801 (2005).
  34. W. A. Bardeen and B. Zumino, Consistent and covariant anomalies in gauge and gravitational theories, Nucl. Phys. B 244, 421 (1984).
  35. J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37, 95 (1971).
  36. H. Liu and P. Glorioso, Lectures on non-equilibrium effective field theories and fluctuating hydrodynamics, PoS TASI2017, 008 (2018), 10.22323/1.305.0008, 1805.09331.
  37. Perfect fluid theory and its extensions, Journal of Physics A: Mathematical and General 37(42), R327 (2004).
  38. A panoply of Schwinger-Keldysh transport, SciPost Phys. 5(5), 053 (2018), 10.21468/SciPostPhys.5.5.053, 1804.04654.
  39. B. Carter and B. Gaffet, Standard covariant formulation for perfect-fluid dynamics, Journal of Fluid Mechanics 186, 1 (1988).
  40. A. Lichnerowicz, Relativistic hydrodynamics, In Magnetohydrodynamics: Waves and Shock Waves in Curved Space-Time, pp. 98–123. Springer (1994).
  41. R. A. Bertlmann, Anomalies in quantum field theory, vol. 91, Oxford university press (2000).
  42. M. Nakahara, Geometry, topology and physics, Boca Raton, USA: Taylor and Francis (2003).
  43. Generalized Global Symmetries, JHEP 02, 172 (2015), 10.1007/JHEP02(2015)172, 1412.5148.
  44. L. Alvarez-Gaume and E. Witten, Gravitational Anomalies, Nucl. Phys. B 234, 269 (1984), 10.1016/0550-3213(84)90066-X.
  45. S. Treiman and R. Jackiw, Current algebra and anomalies, Princeton University Press (2014).
  46. Hydrodynamics, spin currents and torsion, JHEP 05, 139 (2023), 10.1007/JHEP05(2023)139, 2203.05044.
  47. Relativistic spin hydrodynamics with torsion and linear response theory for spin relaxation, JHEP 11, 150 (2021), 10.1007/JHEP11(2021)150, 2107.14231.
  48. T. L. Hughes, R. G. Leigh and O. Parrikar, Torsional Anomalies, Hall Viscosity, and Bulk-boundary Correspondence in Topological States, Phys. Rev. D 88(2), 025040 (2013), 10.1103/PhysRevD.88.025040, 1211.6442.
  49. S. Yajima and T. Kimura, Anomalies in Four-dimensional Curved Space With Torsion, Prog. Theor. Phys. 74, 866 (1985), 10.1143/PTP.74.866.
  50. K. Fukushima, D. E. Kharzeev and H. J. Warringa, Chiral magnetic effect, Phys. Rev. D 78, 074033 (2008).
  51. S. Weinberg, Superconductivity for Particular Theorists, Prog. Theor. Phys. Suppl. 86, 43 (1986), 10.1143/PTPS.86.43.
  52. Testing the chiral magnetic and chiral vortical effects in heavy ion collisions, Phys. Rev. Lett. 106, 062301 (2011).
  53. Adiabatic hydrodynamics: The eightfold way to dissipation, Journal of High Energy Physics 2015(5), 1 (2015).
  54. Hamiltonian formalism for nonlinear waves, Phys.-Usp. 40, 1087 (1997).
  55. B. F. Schutz Jr, Perfect fluids in general relativity: velocity potentials and a variational principle, Physical Review D 2(12), 2762 (1970).
  56. Variational principles in continuum mechanics, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 305(1480), 1 (1968).
  57. Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics, Volume 6, vol. 6, Elsevier (2013).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com