Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exact counterdiabatic driving for finite topological lattice models (2403.12150v1)

Published 18 Mar 2024 in quant-ph and cond-mat.str-el

Abstract: Adiabatic protocols are often employed in state preparation schemes but require the system to be driven by a slowly varying Hamiltonian so that transitions between instantaneous eigenstates are exponentially suppressed. Counterdiabatic driving is a technique to speed up adiabatic protocols by including additional terms calculated from the instantaneous eigenstates that counter diabatic excitations. However, this approach requires knowledge of the full eigenspectrum meaning that the exact analytical form of counterdiabatic driving is only known for a subset of problems, e.g., the harmonic oscillator and transverse field Ising model. We extend this subset of problems to include the general family of one-dimensional non-interacting lattice models with open boundary conditions and arbitrary on-site potential, tunnelling terms, and lattice size. We formulate this approach for all states of lattice models, including bound and in-gap states which appear, e.g., in topological insulators. We also derive targeted counterdiabatic driving terms which are tailored to enforce the dynamical state to remain in a specific state. As an example, we consider state transfer using the topological edge states of the Su-Schrieffer-Heeger model. The derived analytical counterdiabatic driving Hamiltonian can be utilised to inform control protocols in many-body lattice models or to probe the non-equilibrium properties of lattice models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. T. Albash and D. A. Lidar, Rev. Mod. Phys. 90, 015002 (2018).
  2. R. D. Somma, D. Nagaj, and M. Kieferová, Phys. Rev. Lett. 109, 050501 (2012).
  3. M. Born and V. Fock, Zeitschrift für Physik 51, 165 (1928).
  4. T. Kato, Journal of the Physical Society of Japan 5, 435 (1950).
  5. S. Jansen, M.-B. Ruskai, and R. Seiler, Journal of Mathematical Physics 48, 10.1063/1.2798382 (2007).
  6. J. Werschnik and E. Gross, Journal of Physics B: Atomic, Molecular and Optical Physics 40, R175 (2007).
  7. M. Demirplak and S. A. Rice, J. Phys. Chem. A 107, 9937 (2003).
  8. M. Demirplak and S. A. Rice, J. Phys. Chem. B 109, 6838 (2005).
  9. M. V. Berry, J. Phys. A: Math. Theor. 42, 365303 (2009).
  10. A. del Campo, Phys. Rev. Lett. 111, 100502 (2013).
  11. A. del Campo, M. M. Rams, and W. H. Zurek, Phys. Rev. Lett. 109, 115703 (2012).
  12. B. Damski, Journal of Statistical Mechanics: Theory and Experiment 2014, P12019 (2014).
  13. D. Sels and A. Polkovnikov, Proceedings of the National Academy of Sciences 114, E3909 (2017).
  14. J. Yao, L. Lin, and M. Bukov, Phys. Rev. X 11, 031070 (2021).
  15. Q. Xie, K. Seki, and S. Yunoki, Phys. Rev. B 106, 155153 (2022).
  16. K. Takahashi and A. del Campo, Phys. Rev. X 14, 011032 (2024).
  17. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
  18. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
  19. S. Rachel, Reports on Progress in Physics 81, 116501 (2018).
  20. J. K. Asbóth, L. Oroszlány, and A. Pályi, Lecture notes in physics 919, 166 (2016).
  21. Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).
  22. D. Hügel and B. Paredes, Phys. Rev. A 89, 023619 (2014).
  23. I. C. Fulga, F. Hassler, and A. R. Akhmerov, Phys. Rev. B 85, 165409 (2012).
  24. C. W. Duncan, P. Öhberg, and M. Valiente, Phys. Rev. B 97, 195439 (2018).
  25. S. Longhi, G. L. Giorgi, and R. Zambrini, Advanced Quantum Technologies 2, 1800090 (2019).
  26. M. V. Berry, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 392, 45 (1984).
  27. W. Shockley, Phys. Rev. 56, 317 (1939).
  28. M. Demirplak and S. A. Rice, The Journal of chemical physics 129, 10.1063/1.2992152 (2008).
  29. S. Campbell, Europhysics Letters 143, 68001 (2023).
  30. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).
  31. J. Zak, Phys. Rev. Lett. 62, 2747 (1989).
  32. E. J. Meier, F. A. An, and B. Gadway, Nature communications 7, 13986 (2016).
  33. T. Hatomura and K. Takahashi, Phys. Rev. A 103, 012220 (2021).
  34. N. H. Le, A. J. Fisher, and E. Ginossar, Phys. Rev. B 96, 245406 (2017).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube