ALP contribution to the Strong CP problem (2403.12133v2)
Abstract: We compute the one-loop contribution to the $\bar{\theta}$-parameter of an axion-like particle (ALP) with CP-odd derivative couplings. Its contribution to the neutron electric dipole moment is shown to be orders of magnitude larger than that stemming from the one-loop ALP contributions to the up- and down-quark electric and chromoelectric dipole moments. This strongly improves existing bounds on ALP-fermion CP-odd interactions, and also sets limits on previously unconstrained couplings. The case of a general singlet scalar is analyzed as well. In addition, we explore how the bounds are modified in the presence of a Peccei-Quinn symmetry.
- R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38 (1977) 1440–1443.
- R. D. Peccei and H. R. Quinn, “Constraints Imposed by CP Conservation in the Presence of Instantons,” Phys. Rev. D16 (1977) 1791–1797.
- S. Weinberg, “A New Light Boson?,” Phys. Rev. Lett. 40 (1978) 223–226.
- F. Wilczek, “Problem of Strong p and t Invariance in the Presence of Instantons,” Phys. Rev. Lett. 40 (1978) 279–282.
- N. Arkani-Hamed and Y. Grossman, “Light active and sterile neutrinos from compositeness,” Phys. Lett. B459 (1999) 179–182, arXiv:hep-ph/9806223 [hep-ph].
- K. R. Dienes, E. Dudas, and T. Gherghetta, “Invisible axions and large radius compactifications,” Phys. Rev. D 62 (2000) 105023, arXiv:hep-ph/9912455.
- S. Chang, S. Tazawa, and M. Yamaguchi, “Axion model in extra dimensions with TeV scale gravity,” Phys. Rev. D 61 (2000) 084005, arXiv:hep-ph/9908515.
- L. Di Lella, A. Pilaftsis, G. Raffelt, and K. Zioutas, “Search for solar Kaluza-Klein axions in theories of low scale quantum gravity,” Phys. Rev. D 62 (2000) 125011, arXiv:hep-ph/0006327.
- F. Wilczek, “Axions and Family Symmetry Breaking,” Phys. Rev. Lett. 49 (1982) 1549–1552.
- Y. Ema, K. Hamaguchi, T. Moroi, and K. Nakayama, “Flaxion: a minimal extension to solve puzzles in the standard model,” JHEP 01 (2017) 096, arXiv:1612.05492 [hep-ph].
- L. Calibbi, F. Goertz, D. Redigolo, et al., “Minimal axion model from flavor,” Phys. Rev. D95 no. 9, (2017) 095009, arXiv:1612.08040 [hep-ph].
- L. F. Abbott and P. Sikivie, “A Cosmological Bound on the Invisible Axion,” Phys. Lett. B120 (1983) 133–136.
- M. Dine and W. Fischler, “The Not So Harmless Axion,” Phys. Lett. B120 (1983) 137–141.
- J. Preskill, M. B. Wise, and F. Wilczek, “Cosmology of the Invisible Axion,” Phys. Lett. B120 (1983) 127–132.
- G. B. Gelmini and M. Roncadelli, “Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number,” Phys. Lett. 99B (1981) 411–415.
- M. Cicoli, “Axion-like Particles from String Compactifications,” in Proceedings, 9th Patras Workshop on Axions, WIMPs and WISPs (AXION-WIMP 2013): Mainz, Germany, June 24-28, 2013, pp. 235–242. 2013. arXiv:1309.6988 [hep-th].
- I. B. Khriplovich and A. R. Zhitnitsky, “Estimate of the Neutron Electric Dipole Moment in the Weinberg Model of CP Violation,” Sov. J. Nucl. Phys. 34 (1981) 95. [Yad. Fiz.34,167(1981)].
- I. B. Khriplovich and A. R. Zhitnitsky, “What Is the Value of the Neutron Electric Dipole Moment in the Kobayashi-Maskawa Model?,” Phys. Lett. 109B (1982) 490–492.
- I. B. Khriplovich, “Quark Electric Dipole Moment and Induced θ𝜃\thetaitalic_θ Term in the Kobayashi-Maskawa Model,” Phys. Lett. B 173 (1986) 193–196.
- C. Abel et al., “Measurement of the Permanent Electric Dipole Moment of the Neutron,” Phys. Rev. Lett. 124 no. 8, (2020) 081803, arXiv:2001.11966 [hep-ex].
- J. M. Pendlebury et al., “Revised experimental upper limit on the electric dipole moment of the neutron,” Phys. Rev. D 92 no. 9, (2015) 092003, arXiv:1509.04411 [hep-ex].
- L. Di Luzio, R. Gröber, and P. Paradisi, “Hunting for CP𝐶𝑃CPitalic_C italic_P-violating axionlike particle interactions,” Phys. Rev. D 104 no. 9, (2021) 095027, arXiv:2010.13760 [hep-ph].
- C. A. J. O’Hare and E. Vitagliano, “Cornering the axion with CP𝐶𝑃CPitalic_C italic_P-violating interactions,” Phys. Rev. D 102 no. 11, (2020) 115026, arXiv:2010.03889 [hep-ph].
- W. Dekens, J. de Vries, and S. Shain, “CP-violating axion interactions in effective field theory,” JHEP 07 (2022) 014, arXiv:2203.11230 [hep-ph].
- L. Di Luzio, G. Levati, and P. Paradisi, “The Chiral Lagrangian of CP-Violating Axion-Like Particles,” arXiv:2311.12158 [hep-ph].
- V. Plakkot, W. Dekens, J. de Vries, and S. Shaina, “CP-violating axion interactions II: axions as dark matter,” JHEP 11 (2023) 012, arXiv:2306.07065 [hep-ph].
- Q. Bonnefoy, C. Grojean, and J. Kley, “Shift-Invariant Orders of an Axionlike Particle,” Phys. Rev. Lett. 130 no. 11, (2023) 111803, arXiv:2206.04182 [hep-ph].
- C. Grojean, J. Kley, and C.-Y. Yao, “Hilbert series for ALP EFTs,” JHEP 11 (2023) 196, arXiv:2307.08563 [hep-ph].
- M. Bauer, M. Neubert, S. Renner, et al., “Flavor probes of axion-like particles,” JHEP 09 (2022) 056, arXiv:2110.10698 [hep-ph].
- H. Georgi, D. B. Kaplan, and L. Randall, “Manifesting the Invisible Axion at Low-energies,” Phys. Lett. B 169 (1986) 73–78.
- I. Brivio, M. B. Gavela, L. Merlo, et al., “ALPs Effective Field Theory and Collider Signatures,” Eur. Phys. J. C77 no. 8, (2017) 572, arXiv:1701.05379 [hep-ph].
- M. B. Gavela, R. Houtz, P. Quilez, et al., “Flavor constraints on electroweak ALP couplings,” Eur. Phys. J. C79 no. 5, (2019) 369, arXiv:1901.02031 [hep-ph].
- S. Weinberg, “Goldstone Bosons as Fractional Cosmic Neutrinos,” Phys. Rev. Lett. 110 no. 24, (2013) 241301, arXiv:1305.1971 [astro-ph.CO].
- M. Bauer, G. Rostagni, and J. Spinner, “Axion-Higgs portal,” Phys. Rev. D 107 no. 1, (2023) 015007, arXiv:2207.05762 [hep-ph].
- J. R. Ellis and M. K. Gaillard, “Strong and Weak CP Violation,” Nucl. Phys. B150 (1979) 141–162.
- A. E. Nelson, “Naturally Weak CP Violation,” Phys. Lett. 136B (1984) 387–391.
- S. M. Barr, “A Natural Class of Nonpeccei-quinn Models,” Phys. Rev. D30 (1984) 1805.
- M. Ahmed, R. Alarcon, A. Aleksandrova, et al., “A new cryogenic apparatus to search for the neutron electric dipole moment,” Journal of Instrumentation 14 no. 11, (Nov., 2019) P11017–P11017. http://dx.doi.org/10.1088/1748-0221/14/11/P11017.
- J. Kley, T. Theil, E. Venturini, and A. Weiler, “Electric dipole moments at one-loop in the dimension-6 SMEFT,” Eur. Phys. J. C 82 no. 10, (2022) 926, arXiv:2109.15085 [hep-ph].
- R. Gupta, B. Yoon, T. Bhattacharya, et al., “Flavor diagonal tensor charges of the nucleon from (2+1+1)-flavor lattice QCD,” Phys. Rev. D 98 no. 9, (2018) 091501, arXiv:1808.07597 [hep-lat].
- M. Pospelov and A. Ritz, “Electric dipole moments as probes of new physics,” Annals Phys. 318 (2005) 119–169, arXiv:hep-ph/0504231.
- M. Pospelov and A. Ritz, “Neutron EDM from electric and chromoelectric dipole moments of quarks,” Phys. Rev. D 63 (2001) 073015, arXiv:hep-ph/0010037.
- J. Hisano, K. Tsumura, and M. J. S. Yang, “QCD Corrections to Neutron Electric Dipole Moment from Dimension-six Four-Quark Operators,” Phys. Lett. B 713 (2012) 473–480, arXiv:1205.2212 [hep-ph].
- J. Alexander et al., “The storage ring proton EDM experiment,” arXiv:2205.00830 [hep-ph].
- S. N. Balashov, K. Green, M. G. D. van der Grinten, et al., “A Proposal for a cryogenic experiment to measure the neutron electric dipole moment (nEDM),” arXiv:0709.2428 [hep-ex].
- V. Cirigliano, A. Crivellin, W. Dekens, et al., “CP Violation in Higgs-Gauge Interactions: From Tabletop Experiments to the LHC,” Phys. Rev. Lett. 123 no. 5, (2019) 051801, arXiv:1903.03625 [hep-ph].
- Particle Data Group Collaboration, R. L. Workman and Others, “Review of Particle Physics,” PTEP 2022 (2022) 083C01.
- R. K. Ellis et al., “Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020,” arXiv:1910.11775 [hep-ex].
- S. Das Bakshi, J. Machado-Rodríguez, and M. Ramos, “Running beyond ALPs: shift-breaking and CP-violating effects,” JHEP 11 (2023) 133, arXiv:2306.08036 [hep-ph].
- J. M. Pendlebury et al., “Revised experimental upper limit on the electric dipole moment of the neutron,” Phys. Rev. D92 no. 9, (2015) 092003, arXiv:1509.04411 [hep-ex].
- I. I. Y. Bigi and N. G. Uraltsev, “Effective gluon operators and the dipole moment of the neutron,” Sov. Phys. JETP 73 (1991) 198–210.
- M. Pospelov and A. Ritz, “Theta induced electric dipole moment of the neutron via QCD sum rules,” Phys. Rev. Lett. 83 (1999) 2526–2529, arXiv:hep-ph/9904483.
- M. Pospelov, “CP odd interaction of axion with matter,” Phys. Rev. D 58 (1998) 097703, arXiv:hep-ph/9707431.
- M. Chala, G. Guedes, M. Ramos, and J. Santiago, “Running in the ALPs,” Eur. Phys. J. C 81 no. 2, (2021) 181, arXiv:2012.09017 [hep-ph].
- J. Bonilla, I. Brivio, M. B. Gavela, and V. Sanz, “One-loop corrections to ALP couplings,” JHEP 11 (2021) 168, arXiv:2107.11392 [hep-ph].
- A. Manohar and H. Georgi, “Chiral Quarks and the Nonrelativistic Quark Model,” Nucl. Phys. B 234 (1984) 189–212.
- R. J. Crewther, P. Di Vecchia, G. Veneziano, and E. Witten, “Chiral Estimate of the Electric Dipole Moment of the Neutron in Quantum Chromodynamics,” Phys. Lett. 88B (1979) 123. [Erratum: Phys. Lett.91B,487(1980)].
- F.-K. Guo and U.-G. Meissner, “Baryon electric dipole moments from strong CP violation,” JHEP 12 (2012) 097, arXiv:1210.5887 [hep-ph].
- M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “QCD and Resonance Physics. Theoretical Foundations,” Nucl. Phys. B 147 (1979) 385–447.
- P. Gubler and D. Satow, “Recent Progress in QCD Condensate Evaluations and Sum Rules,” Prog. Part. Nucl. Phys. 106 (2019) 1–67, arXiv:1812.00385 [hep-ph].
- V. M. Belyaev and B. L. Ioffe, “Determination of Baryon and Baryonic Resonance Masses from QCD Sum Rules. 1. Nonstrange Baryons,” Sov. Phys. JETP 56 (1982) 493–501.
- B. L. Ioffe and A. V. Smilga, “Nucleon Magnetic Moments and Magnetic Properties of Vacuum in QCD,” Nucl. Phys. B 232 (1984) 109–142.
- V. M. Khatsymovsky, “On the experimental limits on the CP odd three gluon interaction,” Sov. J. Nucl. Phys. 53 (1991) 343–344.
- I. I. Kogan and D. Wyler, “A Sum rule calculation of the neutron electric dipole moment from a quark chromoelectric dipole coupling,” Phys. Lett. B 274 (1992) 100–110.
- J. Hisano, D. Kobayashi, W. Kuramoto, and T. Kuwahara, “Nucleon Electric Dipole Moments in High-Scale Supersymmetric Models,” JHEP 11 (2015) 085, arXiv:1507.05836 [hep-ph].
- C. Vafa and E. Witten, “Restrictions on Symmetry Breaking in Vector-Like Gauge Theories,” Nucl. Phys. B234 (1984) 173–188.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.