Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

ALP contribution to the Strong CP problem (2403.12133v2)

Published 18 Mar 2024 in hep-ph

Abstract: We compute the one-loop contribution to the $\bar{\theta}$-parameter of an axion-like particle (ALP) with CP-odd derivative couplings. Its contribution to the neutron electric dipole moment is shown to be orders of magnitude larger than that stemming from the one-loop ALP contributions to the up- and down-quark electric and chromoelectric dipole moments. This strongly improves existing bounds on ALP-fermion CP-odd interactions, and also sets limits on previously unconstrained couplings. The case of a general singlet scalar is analyzed as well. In addition, we explore how the bounds are modified in the presence of a Peccei-Quinn symmetry.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38 (1977) 1440–1443.
  2. R. D. Peccei and H. R. Quinn, “Constraints Imposed by CP Conservation in the Presence of Instantons,” Phys. Rev. D16 (1977) 1791–1797.
  3. S. Weinberg, “A New Light Boson?,” Phys. Rev. Lett. 40 (1978) 223–226.
  4. F. Wilczek, “Problem of Strong p and t Invariance in the Presence of Instantons,” Phys. Rev. Lett. 40 (1978) 279–282.
  5. N. Arkani-Hamed and Y. Grossman, “Light active and sterile neutrinos from compositeness,” Phys. Lett. B459 (1999) 179–182, arXiv:hep-ph/9806223 [hep-ph].
  6. K. R. Dienes, E. Dudas, and T. Gherghetta, “Invisible axions and large radius compactifications,” Phys. Rev. D 62 (2000) 105023, arXiv:hep-ph/9912455.
  7. S. Chang, S. Tazawa, and M. Yamaguchi, “Axion model in extra dimensions with TeV scale gravity,” Phys. Rev. D 61 (2000) 084005, arXiv:hep-ph/9908515.
  8. L. Di Lella, A. Pilaftsis, G. Raffelt, and K. Zioutas, “Search for solar Kaluza-Klein axions in theories of low scale quantum gravity,” Phys. Rev. D 62 (2000) 125011, arXiv:hep-ph/0006327.
  9. F. Wilczek, “Axions and Family Symmetry Breaking,” Phys. Rev. Lett. 49 (1982) 1549–1552.
  10. Y. Ema, K. Hamaguchi, T. Moroi, and K. Nakayama, “Flaxion: a minimal extension to solve puzzles in the standard model,” JHEP 01 (2017) 096, arXiv:1612.05492 [hep-ph].
  11. L. Calibbi, F. Goertz, D. Redigolo, et al., “Minimal axion model from flavor,” Phys. Rev. D95 no. 9, (2017) 095009, arXiv:1612.08040 [hep-ph].
  12. L. F. Abbott and P. Sikivie, “A Cosmological Bound on the Invisible Axion,” Phys. Lett. B120 (1983) 133–136.
  13. M. Dine and W. Fischler, “The Not So Harmless Axion,” Phys. Lett. B120 (1983) 137–141.
  14. J. Preskill, M. B. Wise, and F. Wilczek, “Cosmology of the Invisible Axion,” Phys. Lett. B120 (1983) 127–132.
  15. G. B. Gelmini and M. Roncadelli, “Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number,” Phys. Lett. 99B (1981) 411–415.
  16. M. Cicoli, “Axion-like Particles from String Compactifications,” in Proceedings, 9th Patras Workshop on Axions, WIMPs and WISPs (AXION-WIMP 2013): Mainz, Germany, June 24-28, 2013, pp. 235–242. 2013. arXiv:1309.6988 [hep-th].
  17. I. B. Khriplovich and A. R. Zhitnitsky, “Estimate of the Neutron Electric Dipole Moment in the Weinberg Model of CP Violation,” Sov. J. Nucl. Phys. 34 (1981) 95. [Yad. Fiz.34,167(1981)].
  18. I. B. Khriplovich and A. R. Zhitnitsky, “What Is the Value of the Neutron Electric Dipole Moment in the Kobayashi-Maskawa Model?,” Phys. Lett. 109B (1982) 490–492.
  19. I. B. Khriplovich, “Quark Electric Dipole Moment and Induced θ𝜃\thetaitalic_θ Term in the Kobayashi-Maskawa Model,” Phys. Lett. B 173 (1986) 193–196.
  20. C. Abel et al., “Measurement of the Permanent Electric Dipole Moment of the Neutron,” Phys. Rev. Lett. 124 no. 8, (2020) 081803, arXiv:2001.11966 [hep-ex].
  21. J. M. Pendlebury et al., “Revised experimental upper limit on the electric dipole moment of the neutron,” Phys. Rev. D 92 no. 9, (2015) 092003, arXiv:1509.04411 [hep-ex].
  22. L. Di Luzio, R. Gröber, and P. Paradisi, “Hunting for C⁢P𝐶𝑃CPitalic_C italic_P-violating axionlike particle interactions,” Phys. Rev. D 104 no. 9, (2021) 095027, arXiv:2010.13760 [hep-ph].
  23. C. A. J. O’Hare and E. Vitagliano, “Cornering the axion with C⁢P𝐶𝑃CPitalic_C italic_P-violating interactions,” Phys. Rev. D 102 no. 11, (2020) 115026, arXiv:2010.03889 [hep-ph].
  24. W. Dekens, J. de Vries, and S. Shain, “CP-violating axion interactions in effective field theory,” JHEP 07 (2022) 014, arXiv:2203.11230 [hep-ph].
  25. L. Di Luzio, G. Levati, and P. Paradisi, “The Chiral Lagrangian of CP-Violating Axion-Like Particles,” arXiv:2311.12158 [hep-ph].
  26. V. Plakkot, W. Dekens, J. de Vries, and S. Shaina, “CP-violating axion interactions II: axions as dark matter,” JHEP 11 (2023) 012, arXiv:2306.07065 [hep-ph].
  27. Q. Bonnefoy, C. Grojean, and J. Kley, “Shift-Invariant Orders of an Axionlike Particle,” Phys. Rev. Lett. 130 no. 11, (2023) 111803, arXiv:2206.04182 [hep-ph].
  28. C. Grojean, J. Kley, and C.-Y. Yao, “Hilbert series for ALP EFTs,” JHEP 11 (2023) 196, arXiv:2307.08563 [hep-ph].
  29. M. Bauer, M. Neubert, S. Renner, et al., “Flavor probes of axion-like particles,” JHEP 09 (2022) 056, arXiv:2110.10698 [hep-ph].
  30. H. Georgi, D. B. Kaplan, and L. Randall, “Manifesting the Invisible Axion at Low-energies,” Phys. Lett. B 169 (1986) 73–78.
  31. I. Brivio, M. B. Gavela, L. Merlo, et al., “ALPs Effective Field Theory and Collider Signatures,” Eur. Phys. J. C77 no. 8, (2017) 572, arXiv:1701.05379 [hep-ph].
  32. M. B. Gavela, R. Houtz, P. Quilez, et al., “Flavor constraints on electroweak ALP couplings,” Eur. Phys. J. C79 no. 5, (2019) 369, arXiv:1901.02031 [hep-ph].
  33. S. Weinberg, “Goldstone Bosons as Fractional Cosmic Neutrinos,” Phys. Rev. Lett. 110 no. 24, (2013) 241301, arXiv:1305.1971 [astro-ph.CO].
  34. M. Bauer, G. Rostagni, and J. Spinner, “Axion-Higgs portal,” Phys. Rev. D 107 no. 1, (2023) 015007, arXiv:2207.05762 [hep-ph].
  35. J. R. Ellis and M. K. Gaillard, “Strong and Weak CP Violation,” Nucl. Phys. B150 (1979) 141–162.
  36. A. E. Nelson, “Naturally Weak CP Violation,” Phys. Lett. 136B (1984) 387–391.
  37. S. M. Barr, “A Natural Class of Nonpeccei-quinn Models,” Phys. Rev. D30 (1984) 1805.
  38. M. Ahmed, R. Alarcon, A. Aleksandrova, et al., “A new cryogenic apparatus to search for the neutron electric dipole moment,” Journal of Instrumentation 14 no. 11, (Nov., 2019) P11017–P11017. http://dx.doi.org/10.1088/1748-0221/14/11/P11017.
  39. J. Kley, T. Theil, E. Venturini, and A. Weiler, “Electric dipole moments at one-loop in the dimension-6 SMEFT,” Eur. Phys. J. C 82 no. 10, (2022) 926, arXiv:2109.15085 [hep-ph].
  40. R. Gupta, B. Yoon, T. Bhattacharya, et al., “Flavor diagonal tensor charges of the nucleon from (2+1+1)-flavor lattice QCD,” Phys. Rev. D 98 no. 9, (2018) 091501, arXiv:1808.07597 [hep-lat].
  41. M. Pospelov and A. Ritz, “Electric dipole moments as probes of new physics,” Annals Phys. 318 (2005) 119–169, arXiv:hep-ph/0504231.
  42. M. Pospelov and A. Ritz, “Neutron EDM from electric and chromoelectric dipole moments of quarks,” Phys. Rev. D 63 (2001) 073015, arXiv:hep-ph/0010037.
  43. J. Hisano, K. Tsumura, and M. J. S. Yang, “QCD Corrections to Neutron Electric Dipole Moment from Dimension-six Four-Quark Operators,” Phys. Lett. B 713 (2012) 473–480, arXiv:1205.2212 [hep-ph].
  44. J. Alexander et al., “The storage ring proton EDM experiment,” arXiv:2205.00830 [hep-ph].
  45. S. N. Balashov, K. Green, M. G. D. van der Grinten, et al., “A Proposal for a cryogenic experiment to measure the neutron electric dipole moment (nEDM),” arXiv:0709.2428 [hep-ex].
  46. V. Cirigliano, A. Crivellin, W. Dekens, et al., “CP Violation in Higgs-Gauge Interactions: From Tabletop Experiments to the LHC,” Phys. Rev. Lett. 123 no. 5, (2019) 051801, arXiv:1903.03625 [hep-ph].
  47. Particle Data Group Collaboration, R. L. Workman and Others, “Review of Particle Physics,” PTEP 2022 (2022) 083C01.
  48. R. K. Ellis et al., “Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020,” arXiv:1910.11775 [hep-ex].
  49. S. Das Bakshi, J. Machado-Rodríguez, and M. Ramos, “Running beyond ALPs: shift-breaking and CP-violating effects,” JHEP 11 (2023) 133, arXiv:2306.08036 [hep-ph].
  50. J. M. Pendlebury et al., “Revised experimental upper limit on the electric dipole moment of the neutron,” Phys. Rev. D92 no. 9, (2015) 092003, arXiv:1509.04411 [hep-ex].
  51. I. I. Y. Bigi and N. G. Uraltsev, “Effective gluon operators and the dipole moment of the neutron,” Sov. Phys. JETP 73 (1991) 198–210.
  52. M. Pospelov and A. Ritz, “Theta induced electric dipole moment of the neutron via QCD sum rules,” Phys. Rev. Lett. 83 (1999) 2526–2529, arXiv:hep-ph/9904483.
  53. M. Pospelov, “CP odd interaction of axion with matter,” Phys. Rev. D 58 (1998) 097703, arXiv:hep-ph/9707431.
  54. M. Chala, G. Guedes, M. Ramos, and J. Santiago, “Running in the ALPs,” Eur. Phys. J. C 81 no. 2, (2021) 181, arXiv:2012.09017 [hep-ph].
  55. J. Bonilla, I. Brivio, M. B. Gavela, and V. Sanz, “One-loop corrections to ALP couplings,” JHEP 11 (2021) 168, arXiv:2107.11392 [hep-ph].
  56. A. Manohar and H. Georgi, “Chiral Quarks and the Nonrelativistic Quark Model,” Nucl. Phys. B 234 (1984) 189–212.
  57. R. J. Crewther, P. Di Vecchia, G. Veneziano, and E. Witten, “Chiral Estimate of the Electric Dipole Moment of the Neutron in Quantum Chromodynamics,” Phys. Lett. 88B (1979) 123. [Erratum: Phys. Lett.91B,487(1980)].
  58. F.-K. Guo and U.-G. Meissner, “Baryon electric dipole moments from strong CP violation,” JHEP 12 (2012) 097, arXiv:1210.5887 [hep-ph].
  59. M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “QCD and Resonance Physics. Theoretical Foundations,” Nucl. Phys. B 147 (1979) 385–447.
  60. P. Gubler and D. Satow, “Recent Progress in QCD Condensate Evaluations and Sum Rules,” Prog. Part. Nucl. Phys. 106 (2019) 1–67, arXiv:1812.00385 [hep-ph].
  61. V. M. Belyaev and B. L. Ioffe, “Determination of Baryon and Baryonic Resonance Masses from QCD Sum Rules. 1. Nonstrange Baryons,” Sov. Phys. JETP 56 (1982) 493–501.
  62. B. L. Ioffe and A. V. Smilga, “Nucleon Magnetic Moments and Magnetic Properties of Vacuum in QCD,” Nucl. Phys. B 232 (1984) 109–142.
  63. V. M. Khatsymovsky, “On the experimental limits on the CP odd three gluon interaction,” Sov. J. Nucl. Phys. 53 (1991) 343–344.
  64. I. I. Kogan and D. Wyler, “A Sum rule calculation of the neutron electric dipole moment from a quark chromoelectric dipole coupling,” Phys. Lett. B 274 (1992) 100–110.
  65. J. Hisano, D. Kobayashi, W. Kuramoto, and T. Kuwahara, “Nucleon Electric Dipole Moments in High-Scale Supersymmetric Models,” JHEP 11 (2015) 085, arXiv:1507.05836 [hep-ph].
  66. C. Vafa and E. Witten, “Restrictions on Symmetry Breaking in Vector-Like Gauge Theories,” Nucl. Phys. B234 (1984) 173–188.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube