Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A GNN Approach for Cell-Free Massive MIMO (2403.12062v1)

Published 8 Feb 2024 in eess.SP, cs.NI, and math.OC

Abstract: Beyond 5G wireless technology Cell-Free Massive MIMO (CFmMIMO) downlink relies on carefully designed precoders and power control to attain uniformly high rate coverage. Many such power control problems can be calculated via second order cone programming (SOCP). In practice, several order of magnitude faster numerical procedure is required because power control has to be rapidly updated to adapt to changing channel conditions. We propose a Graph Neural Network (GNN) based solution to replace SOCP. Specifically, we develop a GNN to obtain downlink max-min power control for a CFmMIMO with maximum ratio transmission (MRT) beamforming. We construct a graph representation of the problem that properly captures the dominant dependence relationship between access points (APs) and user equipments (UEs). We exploit a symmetry property, called permutation equivariance, to attain training simplicity and efficiency. Simulation results show the superiority of our approach in terms of computational complexity, scalability and generalizability for different system sizes and deployment scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590–3600, 2010.
  2. H. Yang and T. L. Marzetta, “A macro cellular wireless network with uniformly high user throughputs,” in IEEE Veh. Technol. Conf., 2014.
  3. ——, “Capacity performance of multicell large-scale antenna systems,” in 51st Annual Allerton Conference on Communication, Control, and Computing, 2013.
  4. H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, “Cell-free massive MIMO versus small cells,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1834–1850, 2017.
  5. E. Nayebi, A. Ashikhmin, T. L. Marzetta, H. Yang, and B. D. Rao, “Precoding and power optimization in cell-free massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4445–4459, 2017.
  6. J. Zhang, E. Björnson, M. Matthaiou, D. W. K. Ng, H. Yang, and D. J. Love, “Prospective multiple antenna technologies for beyond 5G,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1637–1660, 2020.
  7. C. D’Andrea, A. Zappone, S. Buzzi, and M. Debbah, “Uplink power control in cell-free massive MIMO via deep learning,” in IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2019.
  8. Y. Zhang, J. Zhang, Y. Jin, S. Buzzi, and B. Ai, “Deep learning-based power control for uplink cell-free massive MIMO systems,” in IEEE Globecom, 2021.
  9. N. Rajapaksha, K. B. S. Manosha, N. Rajatheva, and M. Latva-aho, “Deep learning-based power control for cell-free massive MIMO networks,” in IEEE International Conference on Communications, 2021.
  10. Y. Zhao, I. G. Niemegeers, and S. Heemstra de Groot, “Power allocation in cell-free massive MIMO: A deep learning method,” IEEE Access, vol. 8, no. 5, pp. 87 185–87 200, 2020.
  11. H. Yan, A. Ashikhmin, and H. Yang, “Optimally supporting IoT with cell-free massive MIMO,” in IEEE Globecom, 2020.
  12. ——, “A scalable and energy efficient IoT system supported by cell-free massive MIMO,” IEEE Internet Things J., 2021.
  13. L. Salaün and H. Yang, “Deep learning based power control for cell-free massive MIMO with MRT,” in IEEE Globecom, 2021.
  14. L. Luo, J. Zhang, S. Chen, X. Zhang, B. Ai, and D. W. K. Ng, “Downlink power control for cell-free massive MIMO with deep reinforcement learning,” IEEE Trans. Veh. Technol., 2022, early Access.
  15. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,” IEEE Trans. Neural Netw., vol. 20, no. 1, pp. 61–80, 2009.
  16. N. Keriven and G. Peyré, “Universal invariant and equivariant graph neural networks,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  17. H. Yang and T. L. Marzetta, “Energy efficiency of massive MIMO: cell-free vs. cellular,” in IEEE 87th Veh. Technol. Conf., 2018.
  18. M. Series, “Guidelines for evaluation of radio interface technologies for IMT-Advanced,” Report ITU M.2135-1, 2009.
  19. J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint arXiv:1607.06450, 2016.
  20. Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang, and Y. Sun, “Masked label prediction: Unified message passing model for semi-supervised classification,” arXiv preprint arXiv:2009.03509, 2020.
  21. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  22. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  23. M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Geometric,” in ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.
  24. E. D. Andersen, C. Roos, and T. Terlaky, “On implementing a primal-dual interior-point method for conic quadratic optimization,” Mathematical Programming, vol. 95, no. 2, pp. 249–277, 2003.
Citations (9)

Summary

We haven't generated a summary for this paper yet.