Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Lattice QCD estimates of thermal photon production from the QGP (2403.11647v2)

Published 18 Mar 2024 in hep-lat and hep-ph

Abstract: Thermal photons produced in heavy-ion collision experiments are an important observable for understanding quark-gluon plasma (QGP). The thermal photon rate from the QGP at a given temperature can be calculated from the spectral function of the vector current correlator. Extraction of the spectral function from the lattice correlator is known to be an ill-conditioned problem, as there is no unique solution for a spectral function for a given lattice correlator with statistical errors. The vector current correlator, on the other hand, receives a large ultraviolet contribution from the vacuum, which makes the extraction of the thermal photon rate difficult from this channel. We therefore consider the difference between the transverse and longitudinal part of the spectral function, only capturing the thermal contribution to the current correlator, simplifying the reconstruction significantly. The lattice correlator is calculated for light quarks in quenched QCD at $T=470~$MeV ($\sim 1.5\, T_c$), as well as in 2+1 flavor QCD at $T=220~$MeV ($\sim 1.2 \, T_{pc}$) with $m_{\pi}=320$ MeV. In order to quantify the non-perturbative effects, the lattice correlator is compared with the corresponding $\text{NLO}+\text{LPM}{\text{LO}}$ estimate of correlator. The reconstruction of the spectral function is performed in several different frameworks, ranging from physics-informed models of the spectral function to more general models in the Backus-Gilbert method and Gaussian Process regression. We find that the resulting photon rates agree within errors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. A. Bazavov et al. (HotQCD), Phys. Lett. B 795, 15 (2019), arXiv:1812.08235 [hep-lat] .
  2. A. Bazavov et al. (HotQCD), Phys. Rev. D 90, 094503 (2014), arXiv:1407.6387 [hep-lat] .
  3. R. D. Pisarski, Phys. Lett. B 110, 155 (1982).
  4. L. D. McLerran and T. Toimela, Phys. Rev. D 31, 545 (1985a).
  5. K. Kajantie and H. I. Miettinen, Z. Phys. C 9, 341 (1981).
  6. C. Gale and J. I. Kapusta, Phys. Rev. C 35, 2107 (1987).
  7. A. Adare et al. (PHENIX), Phys. Rev. C 91, 064904 (2015), arXiv:1405.3940 [nucl-ex] .
  8. A. Adare et al. (PHENIX), Phys. Rev. Lett. 104, 132301 (2010), arXiv:0804.4168 [nucl-ex] .
  9. M. Wilde (ALICE), Nucl. Phys. A 904-905, 573c (2013), arXiv:1210.5958 [hep-ex] .
  10. A. Adare et al. (PHENIX), Phys. Rev. C 94, 064901 (2016), arXiv:1509.07758 [nucl-ex] .
  11. D. Lohner and the ALICE Collaboration, Journal of Physics: Conference Series 446, 012028 (2013).
  12. A. K. Chaudhuri and B. Sinha, Phys. Rev. C 83, 034905 (2011), arXiv:1101.3823 [nucl-th] .
  13. H. B. Meyer, Eur. Phys. J. A 47, 86 (2011), arXiv:1104.3708 [hep-lat] .
  14. L. D. McLerran and T. Toimela, Phys. Rev. D 31, 545 (1985b).
  15. S. Caron-Huot, Phys. Rev. D 79, 125009 (2009a), arXiv:0903.3958 [hep-ph] .
  16. R. Sommer, PoS LATTICE2013, 015 (2014), arXiv:1401.3270 [hep-lat] .
  17. A. Bazavov et al. (MILC), PoS LATTICE2010, 074 (2010), arXiv:1012.0868 [hep-lat] .
  18. M. Luscher and P. Weisz, Commun. Math. Phys. 97, 59 (1985), [Erratum: Commun.Math.Phys. 98, 433 (1985)].
  19. M. Lüscher and P. Weisz, Physics Letters B 158, 250 (1985).
  20. J. Heitger and F. Joswig (ALPHA), Eur. Phys. J. C 81, 254 (2021), arXiv:2010.09539 [hep-lat] .
  21. G. Jackson and M. Laine, JHEP 11, 144 (2019), arXiv:1910.09567 [hep-ph] .
  22. M. Laine, JHEP 05, 083 (2013), arXiv:1304.0202 [hep-ph] .
  23. G. Jackson, Phys. Rev. D 100, 116019 (2019), arXiv:1910.07552 [hep-ph] .
  24. T. Altherr and P. Aurenche, Z. Phys. C 45, 99 (1989).
  25. G. D. Moore and J.-M. Robert,   (2006), arXiv:hep-ph/0607172 .
  26. M. Laine and A. Rothkopf, JHEP 07, 082 (2013), arXiv:1304.4443 [hep-ph] .
  27. S. Caron-Huot, Phys. Rev. D 79, 065039 (2009b), arXiv:0811.1603 [hep-ph] .
  28. S. Aoki et al. (Flavour Lattice Averaging Group), Eur. Phys. J. C 80, 113 (2020), arXiv:1902.08191 [hep-lat] .
  29. A. Vuorinen, Phys. Rev. D 67, 074032 (2003), arXiv:hep-ph/0212283 .
  30. S. Gupta, Phys. Lett. B 597, 57 (2004), arXiv:hep-lat/0301006 .
  31. P. K. Kovtun and A. O. Starinets, Phys. Rev. D 72, 086009 (2005), arXiv:hep-th/0506184 .
  32. G. Backus and F. Gilbert, Geophys. J. Int. 16, 169 (1968).
  33. C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine learning, Vol. 1 (Springer, 2006).
  34. A. P. Valentine and M. Sambridge, Geophysical Journal International 220, 1632 (2020).
  35. I. Steinwart, Journal of Machine Learning Research 2, 67 (2001).
  36. L. Mazur et al. (HotQCD),   (2023), arXiv:2306.01098 [hep-lat] .

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.