Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

A reverse Faber-Krahn inequality for the magnetic Laplacian (2403.11336v3)

Published 17 Mar 2024 in math.SP, math-ph, math.AP, and math.MP

Abstract: We consider the first eigenvalue of the magnetic Laplacian in a bounded and simply connected planar domain, with uniform magnetic field and Neumann boundary conditions. We investigate the reverse Faber-Krahn inequality conjectured by S. Fournais and B. Helffer, stating that this eigenvalue is maximized by the disk for a given area. Using the method of level lines, we prove the conjecture for small enough values of the magnetic field (those for which the corresponding eigenfunction in the disk is radial).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. Isoperimetric inequalities for eigenvalues of the Laplacian and the Schrödinger operator. Bull. Math. Sci., 2(1):1–56, 2012.
  2. Geometric bounds for the magnetic Neumann eigenvalues in the plane. J. Math. Pures Appl. (9), 179:454–497, 2023.
  3. László Erdős. Rayleigh-type isoperimetric inequality with a homogeneous magnetic field. Calc. Var. Partial Differential Equations, 4(3):283–292, 1996.
  4. Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
  5. S. Fournais and B. Helffer. Inequalities for the lowest magnetic Neumann eigenvalue. Lett. Math. Phys., 109(7):1683–1700, 2019.
  6. Spectral methods in surface superconductivity, volume 77 of Prog. Nonlinear Differ. Equ. Appl. Basel: Birkhäuser, 2010.
  7. On the isoperimetric inequality for the magnetic Robin Laplacian with negative boundary parameter. J. Geom. Anal., 32(6):20, 2022. Id/No 182.
  8. A geometric bound on the lowest magnetic Neumann eigenvalue via the torsion function, 2023. arXiv:2312.06161v1.
  9. Tosio Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition.
  10. B. S. Mityagin. The zero set of a real analytic function. Mat. Zametki, 107(3):473–475, 2020.
  11. G. Pólya and G. Szegö. Isoperimetric Inequalities in Mathematical Physics, volume No. 27 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1951.
  12. D. Saint-James. Etude du champ critique hc3 dans une geometrie cylindrique. Physics Letters, 15(1):13–15, 1965.
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets