2000 character limit reached
A reverse Faber-Krahn inequality for the magnetic Laplacian (2403.11336v3)
Published 17 Mar 2024 in math.SP, math-ph, math.AP, and math.MP
Abstract: We consider the first eigenvalue of the magnetic Laplacian in a bounded and simply connected planar domain, with uniform magnetic field and Neumann boundary conditions. We investigate the reverse Faber-Krahn inequality conjectured by S. Fournais and B. Helffer, stating that this eigenvalue is maximized by the disk for a given area. Using the method of level lines, we prove the conjecture for small enough values of the magnetic field (those for which the corresponding eigenfunction in the disk is radial).
- Isoperimetric inequalities for eigenvalues of the Laplacian and the Schrödinger operator. Bull. Math. Sci., 2(1):1–56, 2012.
- Geometric bounds for the magnetic Neumann eigenvalues in the plane. J. Math. Pures Appl. (9), 179:454–497, 2023.
- László Erdős. Rayleigh-type isoperimetric inequality with a homogeneous magnetic field. Calc. Var. Partial Differential Equations, 4(3):283–292, 1996.
- Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
- S. Fournais and B. Helffer. Inequalities for the lowest magnetic Neumann eigenvalue. Lett. Math. Phys., 109(7):1683–1700, 2019.
- Spectral methods in surface superconductivity, volume 77 of Prog. Nonlinear Differ. Equ. Appl. Basel: Birkhäuser, 2010.
- On the isoperimetric inequality for the magnetic Robin Laplacian with negative boundary parameter. J. Geom. Anal., 32(6):20, 2022. Id/No 182.
- A geometric bound on the lowest magnetic Neumann eigenvalue via the torsion function, 2023. arXiv:2312.06161v1.
- Tosio Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition.
- B. S. Mityagin. The zero set of a real analytic function. Mat. Zametki, 107(3):473–475, 2020.
- G. Pólya and G. Szegö. Isoperimetric Inequalities in Mathematical Physics, volume No. 27 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1951.
- D. Saint-James. Etude du champ critique hc3 dans une geometrie cylindrique. Physics Letters, 15(1):13–15, 1965.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.