Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Dynamics and Resonance Fluorescence from a Superconducting Artificial Atom Doubly Driven by Quantized and Classical Fields (2403.11142v1)

Published 17 Mar 2024 in quant-ph

Abstract: We report an experimental demonstration of resonance fluorescence in a two-level superconducting artificial atom under two driving fields coupled to a detuned cavity. One of the fields is classical and the other is varied from quantum (vacuum fluctuations) to classical one by controlling the photon number inside the cavity. The device consists of a transmon qubit strongly coupled to a one-dimensional transmission line and a coplanar waveguide resonator. We observe a sideband anti-crossing and asymmetry in the emission spectra of the system through a one-dimensional transmission line, which is fundamentally different from the weak coupling case. By changing the photon number inside the cavity, the emission spectrum of our doubly driven system approaches to the case when the atom is driven by two classical bichromatic fields. We also measure the dynamical evolution of the system through the transmission line and study the properties of the first-order correlation function, Rabi oscillations and energy relaxation in the system. The study of resonance fluorescence from an atom driven by two fields promotes understanding decoherence in superconducting quantum circuits and may find applications in superconducting quantum computing and quantum networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. B. R. Mollow, Phys. Rev. 188, 1969 (1969).
  2. F. Schuda, C. R. S. Jr, and M. Hercher, J. Phys. B-At. Mol. Opt. 7, L198 (1974).
  3. F. Y. Wu, R. E. Grove, and S. Ezekiel, Phys. Rev. Lett. 35, 1426 (1975).
  4. H. J. Carmichael and D. F. Walls, J. Phys. B: At. Mol. Opt. 9, L43 (1976).
  5. H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, 691 (1977).
  6. M. Scully and M. Zubairy, Quantum Optics, Quantum Optics (Cambridge University Press, 1997).
  7. E. M. Purcell, H. C. Torrey, and R. V. Pound, Phys. Rev. 69, 37 (1946).
  8. C. M. Savage, Phys. Rev. Lett. 63, 1376 (1989).
  9. T. Quang and H. Freedhoff, Phys. Rev. A 47, 2285 (1993).
  10. H. Freedhoff and T. Quang, J. Opt. Soc. Am. B 10, 1337 (1993).
  11. H. J. Carmichael, A. S. Lane, and D. F. Walls, Phys. Rev. Lett. 58, 2539 (1987).
  12. S.-Y. Zhu and M. O. Scully, Phys. Rev. Lett. 76, 388 (1996).
  13. Z. Ficek and T. Rudolph, Phys. Rev. A 60, R4245 (1999).
  14. C. Joshi, F. Yang, and M. Mirhosseini, Phys. Rev. X 13, 021039 (2023).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com