Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thermal-NeRF: Neural Radiance Fields from an Infrared Camera (2403.10340v1)

Published 15 Mar 2024 in cs.CV and cs.RO

Abstract: In recent years, Neural Radiance Fields (NeRFs) have demonstrated significant potential in encoding highly-detailed 3D geometry and environmental appearance, positioning themselves as a promising alternative to traditional explicit representation for 3D scene reconstruction. However, the predominant reliance on RGB imaging presupposes ideal lighting conditions: a premise frequently unmet in robotic applications plagued by poor lighting or visual obstructions. This limitation overlooks the capabilities of infrared (IR) cameras, which excel in low-light detection and present a robust alternative under such adverse scenarios. To tackle these issues, we introduce Thermal-NeRF, the first method that estimates a volumetric scene representation in the form of a NeRF solely from IR imaging. By leveraging a thermal mapping and structural thermal constraint derived from the thermal characteristics of IR imaging, our method showcasing unparalleled proficiency in recovering NeRFs in visually degraded scenes where RGB-based methods fall short. We conduct extensive experiments to demonstrate that Thermal-NeRF can achieve superior quality compared to existing methods. Furthermore, we contribute a dataset for IR-based NeRF applications, paving the way for future research in IR NeRF reconstruction.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Z. Ma and S. Liu, “A review of 3d reconstruction techniques in civil engineering and their applications,” Advanced Engineering Informatics, vol. 37, pp. 163–174, 2018.
  2. Z. Kang, J. Yang, Z. Yang, and S. Cheng, “A review of techniques for 3d reconstruction of indoor environments,” ISPRS International Journal of Geo-Information, vol. 9, no. 5, p. 330, 2020.
  3. B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,” Communications of the ACM, vol. 65, no. 1, pp. 99–106, 2021.
  4. J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 3, pp. 611–625, 2017.
  5. B. Curless and M. Levoy, “A volumetric method for building complex models from range images,” in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, 1996, pp. 303–312.
  6. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Mesh optimization,” in Proceedings of the 20th annual conference on Computer graphics and interactive techniques, 1993, pp. 19–26.
  7. B. Mildenhall, P. Hedman, R. Martin-Brualla, P. P. Srinivasan, and J. T. Barron, “Nerf in the dark: High dynamic range view synthesis from noisy raw images,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16 190–16 199.
  8. R. Martin-Brualla, N. Radwan, M. S. Sajjadi, J. T. Barron, A. Dosovitskiy, and D. Duckworth, “Nerf in the wild: Neural radiance fields for unconstrained photo collections,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 7210–7219.
  9. T. Fujitomi, K. Sakurada, R. Hamaguchi, H. Shishido, M. Onishi, and Y. Kameda, “Lb-nerf: light bending neural radiance fields for transparent medium,” in 2022 IEEE International Conference on Image Processing (ICIP).   IEEE, 2022, pp. 2142–2146.
  10. M. Vollmer, “Infrared thermal imaging,” in Computer Vision: A Reference Guide.   Springer, 2021, pp. 666–670.
  11. K. Ko, K. Shim, K. Lee, and C. Kim, “Large-scale benchmark for uncooled infrared image deblurring,” IEEE Sensors Journal, 2023.
  12. X. Kuang, X. Sui, Y. Liu, Q. Chen, and G. Gu, “Single infrared image enhancement using a deep convolutional neural network,” Neurocomputing, vol. 332, pp. 119–128, 2019.
  13. Y. Liu, S. Liu, and Z. Wang, “A general framework for image fusion based on multi-scale transform and sparse representation,” Information fusion, vol. 24, pp. 147–164, 2015.
  14. R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “Dtam: Dense tracking and mapping in real-time,” in 2011 international conference on computer vision.   IEEE, 2011, pp. 2320–2327.
  15. S. Lombardi, T. Simon, J. Saragih, G. Schwartz, A. Lehrmann, and Y. Sheikh, “Neural volumes: Learning dynamic renderable volumes from images,” arXiv preprint arXiv:1906.07751, 2019.
  16. J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, “Deepsdf: Learning continuous signed distance functions for shape representation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 165–174.
  17. J. Deng, Q. Wu, X. Chen, S. Xia, Z. Sun, G. Liu, W. Yu, and L. Pei, “Nerf-loam: Neural implicit representation for large-scale incremental lidar odometry and mapping,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 8218–8227.
  18. P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang, “Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction,” arXiv preprint arXiv:2106.10689, 2021.
  19. N. Kulkarni, J. Johnson, and D. F. Fouhey, “Directed ray distance functions for 3d scene reconstruction,” in European Conference on Computer Vision.   Springer, 2022, pp. 201–219.
  20. G. Metzer, E. Richardson, O. Patashnik, R. Giryes, and D. Cohen-Or, “Latent-nerf for shape-guided generation of 3d shapes and textures,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 12 663–12 673.
  21. Y. Xiao, Y. Zhao, Y. Xu, and S. Gao, “Resnerf: Geometry-guided residual neural radiance field for indoor scene novel view synthesis,” arXiv preprint arXiv:2211.16211, 2022.
  22. J. Tang, H. Zhou, X. Chen, T. Hu, E. Ding, J. Wang, and G. Zeng, “Delicate textured mesh recovery from nerf via adaptive surface refinement,” arXiv preprint arXiv:2303.02091, 2023.
  23. F. Bao, X. Wang, S. H. Sureshbabu, G. Sreekumar, L. Yang, V. Aggarwal, V. N. Boddeti, and Z. Jacob, “Heat-assisted detection and ranging,” Nature, vol. 619, no. 7971, pp. 743–748, 2023.
  24. Y. He, B. Deng, H. Wang, L. Cheng, K. Zhou, S. Cai, and F. Ciampa, “Infrared machine vision and infrared thermography with deep learning: A review,” Infrared physics & technology, vol. 116, p. 103754, 2021.
  25. J.-H. He, D.-P. Liu, C.-H. Chung, and H.-H. Huang, “Infrared thermography measurement for vibration-based structural health monitoring in low-visibility harsh environments,” Sensors, vol. 20, no. 24, p. 7067, 2020.
  26. J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixelwise view selection for unstructured multi-view stereo,” in European Conference on Computer Vision (ECCV), 2016.
  27. R. Hou, D. Zhou, R. Nie, D. Liu, L. Xiong, Y. Guo, and C. Yu, “Vif-net: An unsupervised framework for infrared and visible image fusion,” IEEE Transactions on Computational Imaging, vol. 6, pp. 640–651, 2020.
  28. Y. Ma, Y. Wang, X. Mei, C. Liu, X. Dai, F. Fan, and J. Huang, “Visible/infrared combined 3d reconstruction scheme based on nonrigid registration of multi-modality images with mixed features,” IEEE Access, vol. 7, pp. 19 199–19 211, 2019.
  29. S. Lang and K. Jäger, “3d scene reconstruction from ir image sequences for image-based navigation update and target detection of an autonomous airborne system,” in Infrared Technology and Applications XXXIV, vol. 6940.   SPIE, 2008, pp. 535–543.
  30. M. Poggi, P. Z. Ramirez, F. Tosi, S. Salti, S. Mattoccia, and L. Di Stefano, “Cross-spectral neural radiance fields,” in 2022 International Conference on 3D Vision (3DV).   IEEE, 2022, pp. 606–616.
  31. S. Katragadda, W. Lee, Y. Peng, P. Geneva, C. Chen, C. Guo, M. Li, and G. Huang, “Nerf-vins: A real-time neural radiance field map-based visual-inertial navigation system,” arXiv preprint arXiv:2309.09295, 2023.
  32. Z. Wang, S. Wu, W. Xie, M. Chen, and V. A. Prisacariu, “Nerf–: Neural radiance fields without known camera parameters,” arXiv preprint arXiv:2102.07064, 2021.
  33. A. M. Eskicioglu and P. S. Fisher, “Image quality measures and their performance,” IEEE Transactions on communications, vol. 43, no. 12, pp. 2959–2965, 1995.
  34. A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th international conference on pattern recognition.   IEEE, 2010, pp. 2366–2369.
  35. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.
  36. Z. Xie, X. Yang, Y. Yang, Q. Sun, Y. Jiang, H. Wang, Y. Cai, and M. Sun, “S3im: Stochastic structural similarity and its unreasonable effectiveness for neural fields,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 18 024–18 034.
  37. M. Tancik, E. Weber, E. Ng, R. Li, B. Yi, J. Kerr, T. Wang, A. Kristoffersen, J. Austin, K. Salahi, A. Ahuja, D. McAllister, and A. Kanazawa, “Nerfstudio: A modular framework for neural radiance field development,” in ACM SIGGRAPH 2023 Conference Proceedings, ser. SIGGRAPH ’23, 2023.
  38. J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P. Hedman, “Mip-nerf 360: Unbounded anti-aliased neural radiance fields,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5470–5479.
  39. C. Sun, M. Sun, and H.-T. Chen, “Improved direct voxel grid optimization for radiance fields reconstruction,” arXiv preprint arXiv:2206.05085, 2022.
  40. R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 586–595.
  41. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  42. W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d surface construction algorithm,” in Seminal graphics: pioneering efforts that shaped the field, 1998, pp. 347–353.
Citations (5)

Summary

We haven't generated a summary for this paper yet.