Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revolutionizing Packaging: A Robotic Bagging Pipeline with Constraint-aware Structure-of-Interest Planning (2403.10309v1)

Published 15 Mar 2024 in cs.RO

Abstract: Bagging operations, common in packaging and assisted living applications, are challenging due to a bag's complex deformable properties. To address this, we develop a robotic system for automated bagging tasks using an adaptive structure-of-interest (SOI) manipulation approach. Our method relies on real-time visual feedback to dynamically adjust manipulation without requiring prior knowledge of bag materials or dynamics. We present a robust pipeline featuring state estimation for SOIs using Gaussian Mixture Models (GMM), SOI generation via optimization-based bagging techniques, SOI motion planning with Constrained Bidirectional Rapidly-exploring Random Trees (CBiRRT), and dual-arm manipulation coordinated by Model Predictive Control (MPC). Experiments demonstrate the system's ability to achieve precise, stable bagging of various objects using adaptive coordination of the manipulators. The proposed framework advances the capability of dual-arm robots to perform more sophisticated automation of common tasks involving interactions with deformable objects.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. A. Gonnochenko, A. Semochkin et al., “Coinbot: Intelligent robotic coin bag manipulation using artificial brain,” in 2021 7th International Conference on Automation, Robotics and Applications (ICARA).   IEEE, 2021, pp. 67–74.
  2. M. Saha and P. Isto, “Manipulation planning for deformable linear objects,” IEEE Trans. on Robotics, vol. 23, no. 6, pp. 1141–1150, 2007.
  3. M. Kudo, Y. Nasu, K. Mitobe, and B. Borovac, “Multi-arm robot control system for manipulation of flexible materials in sewing operation,” Mechatronics, vol. 10, no. 3, pp. 371–402, 2000.
  4. R. Alami, T. Simeon, and J.-P. Laumond, “A geometrical approach to planning manipulation tasks. the case of discrete placements and grasps,” in The fifth international symposium on Robotics research.   MIT Press, 1990, pp. 453–463.
  5. A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine, “Combining self-supervised learning and imitation for vision-based rope manipulation,” in 2017 IEEE international conference on robotics and automation (ICRA).   IEEE, 2017, pp. 2146–2153.
  6. D. Seita, P. Florence, J. Tompson, E. Coumans, V. Sindhwani, K. Goldberg, and A. Zeng, “Learning to rearrange deformable cables, fabrics, and bags with goal-conditioned transporter networks,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 4568–4575.
  7. L. Wijayarathne, Z. Zhou, Y. Zhao, and F. L. Hammond, “Real-time deformable-contact-aware model predictive control for force-modulated manipulation,” IEEE Transactions on Robotics, 2023.
  8. F. Zhang and Y. Demiris, “Visual-tactile learning of garment unfolding for robot-assisted dressing,” IEEE Robotics and Automation Letters, 2023.
  9. Z. Weng, P. Zhou, H. Yin, A. Kravberg, A. Varava, D. Navarro-Alarcon, and D. Kragic, “Interactive perception for deformable object manipulation,” 2024.
  10. L. Y. Chen, B. Shi et al., “Autobag: Learning to open plastic bags and insert objects,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 3918–3925.
  11. A. Bahety, S. Jain et al., “Bag all you need: Learning a generalizable bagging strategy for heterogeneous objects,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2023, pp. 960–967.
  12. N. Gu, Z. Zhang, R. He, and L. Yu, “Shakingbot: dynamic manipulation for bagging,” Robotica, vol. 42, no. 3, pp. 775–791, 2024.
  13. P. Zhou, P. Zheng et al., “Bimanual deformable bag manipulation using a structure-of-interest based latent dynamics model,” arXiv preprint arXiv:2401.11432, 2024.
  14. T. Tang and M. Tomizuka, “Track deformable objects from point clouds with structure preserved registration,” The International Journal of Robotics Research, vol. 41, no. 6, pp. 599–614, 2022.
  15. B. M. S. Hasan and A. M. Abdulazeez, “A review of principal component analysis algorithm for dimensionality reduction,” Journal of Soft Computing and Data Mining, vol. 2, no. 1, pp. 20–30, 2021.
  16. X. Yan, C. Zheng, Z. Li, S. Wang, and S. Cui, “Pointasnl: Robust point clouds processing using nonlocal neural networks with adaptive sampling,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 5589–5598.
  17. D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Manipulation planning on constraint manifolds,” in 2009 IEEE international conference on robotics and automation.   IEEE, 2009, pp. 625–632.
  18. M. Yu, K. Lv et al., “A coarse-to-fine framework for dual-arm manipulation of deformable linear objects with whole-body obstacle avoidance,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 10 153–10 159.
  19. J. Qi, G. Ran, B. Wang, J. Liu, W. Ma, P. Zhou, and D. Navarro-Alarcon, “Adaptive shape servoing of elastic rods using parameterized regression features and auto-tuning motion controls,” IEEE Robotics and Automation Letters, 2023.
  20. J. Qi, G. Ma et al., “Contour moments based manipulation of composite rigid-deformable objects with finite time model estimation and shape/position control,” IEEE/ASME Transactions on Mechatronics, 2021.
  21. O. Roussel, M. Taïx, and T. Bretl, “Motion planning for a deformable linear object,” in European workshop on deformable object manipulation, 2014, pp. 153–158.
  22. C. Suh, T. T. Um et al., “Tangent space rrt: A randomized planning algorithm on constraint manifolds,” in 2011 IEEE International Conference on Robotics and Automation.   IEEE, 2011, pp. 4968–4973.
  23. X. Ren, H. Li, and Y. Li, “Image-based visual servoing control of robot manipulators using hybrid algorithm with feature constraints,” IEEE Access, vol. 8, pp. 223 495–223 508, 2020.
  24. M. Hao and Z. Sun, “A universal state-space approach to uncalibrated model-free visual servoing,” IEEE/ASME Transactions on Mechatronics, vol. 17, no. 5, pp. 833–846, 2011.

Summary

We haven't generated a summary for this paper yet.