Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bimanual Deformable Bag Manipulation Using a Structure-of-Interest Based Neural Dynamics Model (2401.11432v2)

Published 21 Jan 2024 in cs.RO

Abstract: The manipulation of deformable objects by robotic systems presents a significant challenge due to their complex and infinite-dimensional configuration spaces. This paper introduces a novel approach to Deformable Object Manipulation (DOM) by emphasizing the identification and manipulation of Structures of Interest (SOIs) in deformable fabric bags. We propose a bimanual manipulation framework that leverages a Graph Neural Network (GNN)-based latent dynamics model to succinctly represent and predict the behavior of these SOIs. Our approach involves constructing a graph representation from partial point cloud data of the object and learning the latent dynamics model that effectively captures the essential deformations of the fabric bag within a reduced computational space. By integrating this latent dynamics model with Model Predictive Control (MPC), we empower robotic manipulators to perform precise and stable manipulation tasks focused on the SOIs. We have validated our framework through various empirical experiments demonstrating its efficacy in bimanual manipulation of fabric bags. Our contributions not only address the complexities inherent in DOM but also provide new perspectives and methodologies for enhancing robotic interactions with deformable objects by concentrating on their critical structural elements. Experimental videos can be obtained from https://sites.google.com/view/bagbot.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. H. Yin, A. Varava, and D. Kragic, “Modeling, learning, perception, and control methods for deformable object manipulation,” Sci. Robot., vol. 6, no. 54, 2021.
  2. J. Zhu, A. Cherubini, C. Dune, D. Navarro-Alarcon, F. Alambeigi, D. Berenson, F. Ficuciello, K. Harada, J. Kober, X. Li et al., “Challenges and outlook in robotic manipulation of deformable objects,” IEEE Robotics & Automation Magazine, vol. 29, no. 3, pp. 67–77, 2022.
  3. Z. Hu, T. Han, P. Sun, J. Pan, and D. Manocha, “3-d deformable object manipulation using deep neural networks,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4255–4261, 2019.
  4. I. Garcia-Camacho, J. Borràs, B. Calli, A. Norton, and G. Alenyà, “Household cloth object set: Fostering benchmarking in deformable object manipulation,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 5866–5873, 2022.
  5. S. Huo, A. Duan, C. Li, P. Zhou, W. Ma, H. Wang, and D. Navarro-Alarcon, “Keypoint-based planar bimanual shaping of deformable linear objects under environmental constraints with hierarchical action framework,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5222–5229, 2022.
  6. X. Lin, Z. Huang, Y. Li, J. B. Tenenbaum, D. Held, and C. Gan, “Diffskill: Skill abstraction from differentiable physics for deformable object manipulations with tools,” in International Conference on Learning Representations (ICLR), 2022.
  7. P. Zhou, J. Zhu, S. Huo, and D. Navarro-Alarcon, “LaSeSOM: A latent and semantic representation framework for soft object manipulation,” IEEE Robot. Autom. Lett., vol. 6, no. 3, pp. 5381–5388, 2021.
  8. X. Provot et al., “Deformation constraints in a mass-spring model to describe rigid cloth behaviour,” in Graphics interface.   Canadian Information Processing Society, 1995, pp. 147–147.
  9. K. Tabata, H. Seki, T. Tsuji, and T. Hiramitsu, “Mass spring model for non-uniformed deformable linear object toward dexterous manipulation,” Artificial Life and Robotics, vol. 28, no. 4, pp. 812–822, 2023.
  10. V. E. Arriola-Rios, P. Guler, F. Ficuciello, D. Kragic, B. Siciliano, and J. L. Wyatt, “Modeling of deformable objects for robotic manipulation: A tutorial and review,” Frontiers in Robotics and AI, vol. 7, p. 82, 2020.
  11. F. Ficuciello, A. Migliozzi, E. Coevoet, A. Petit, and C. Duriez, “Fem-based deformation control for dexterous manipulation of 3d soft objects,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 4007–4013.
  12. J. Sanchez, K. Mohy El Dine, J. A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar, “Blind manipulation of deformable objects based on force sensing and finite element modeling,” Frontiers in Robotics and AI, vol. 7, p. 73, 2020.
  13. Z. Xu, C. Chi, B. Burchfiel, E. Cousineau, S. Feng, and S. Song, “Dextairity: Deformable manipulation can be a breeze,” arXiv preprint arXiv:2203.01197, 2022.
  14. P. Zhou, P. Zheng, J. Qi, C. Li, H.-Y. Lee, A. Duan, L. Lu, Z. Li, L. Hu, and D. Navarro-Alarcon, “Reactive human–robot collaborative manipulation of deformable linear objects using a new topological latent control model,” Robotics and Computer-Integrated Manufacturing, vol. 88, p. 102727, 2024.
  15. D. Navarro-Alarcon, H. M. Yip, Z. Wang, Y.-H. Liu, F. Zhong, T. Zhang, and P. Li, “Automatic 3-d manipulation of soft objects by robotic arms with an adaptive deformation model,” IEEE Transactions on Robotics, vol. 32, no. 2, pp. 429–441, 2016.
  16. J. Qi, G. Ma, J. Zhu, P. Zhou, Y. Lyu, H. Zhang, and D. Navarro-Alarcon, “Contour moments based manipulation of composite rigid-deformable objects with finite time model estimation and shape/position control,” IEEE/ASME Transactions on Mechatronics, vol. 27, no. 5, pp. 2985–2996, 2021.
  17. X. Lin, C. Qi, Y. Zhang, Z. Huang, K. Fragkiadaki, Y. Li, C. Gan, and D. Held, “Planning with spatial-temporal abstraction from point clouds for deformable object manipulation,” in Conference on Robot Learning (CoRL), 2022.
  18. A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine, “Combining self-supervised learning and imitation for vision-based rope manipulation,” in 2017 IEEE international conference on robotics and automation (ICRA).   IEEE, 2017, pp. 2146–2153.
  19. M. Yan, Y. Zhu, N. Jin, and J. Bohg, “Self-supervised learning of state estimation for manipulating deformable linear objects,” IEEE robotics and automation letters, vol. 5, no. 2, pp. 2372–2379, 2020.
  20. P. Reiser, M. Neubert, A. Eberhard, L. Torresi, C. Zhou, C. Shao, H. Metni, C. van Hoesel, H. Schopmans, T. Sommer et al., “Graph neural networks for materials science and chemistry,” Communications Materials, vol. 3, no. 1, p. 93, 2022.
  21. J. Shlomi, P. Battaglia, and J.-R. Vlimant, “Graph neural networks in particle physics,” Machine Learning: Science and Technology, vol. 2, no. 2, p. 021001, 2020.
  22. J. Gasteiger, F. Becker, and S. Günnemann, “Gemnet: Universal directional graph neural networks for molecules,” Advances in Neural Information Processing Systems, vol. 34, pp. 6790–6802, 2021.
  23. P. Zhou, J. Qi, A. Duan, S. Huo, Z. Wu, and D. Navarro-Alarcon, “Imitating tool-based garment folding from a single visual observation using hand-object graph dynamics,” IEEE Transactions on Industrial Informatics, 2024.
  24. T. Wang, R. Liao, J. Ba, and S. Fidler, “Nervenet: Learning structured policy with graph neural networks,” in International conference on learning representations, 2018.
  25. E. Tolstaya, F. Gama, J. Paulos, G. Pappas, V. Kumar, and A. Ribeiro, “Learning decentralized controllers for robot swarms with graph neural networks,” in Conference on robot learning.   PMLR, 2020, pp. 671–682.
  26. Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks for decentralized multi-robot path planning,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 11 785–11 792.
  27. E. Tolstaya, J. Paulos, V. Kumar, and A. Ribeiro, “Multi-robot coverage and exploration using spatial graph neural networks,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 8944–8950.
  28. H. Shi, H. Xu, Z. Huang, Y. Li, and J. Wu, “Robocraft: Learning to see, simulate, and shape elasto-plastic objects with graph networks,” arXiv preprint arXiv:2205.02909, 2022.
  29. C. Wang, Y. Zhang, X. Zhang, Z. Wu, X. Zhu, S. Jin, T. Tang, and M. Tomizuka, “Offline-online learning of deformation model for cable manipulation with graph neural networks,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5544–5551, 2022.
  30. Y. Rubanova, A. Sanchez-Gonzalez, T. Pfaff, and P. Battaglia, “Constraint-based graph network simulator,” arXiv preprint arXiv:2112.09161, 2021.
  31. H. Bertiche, M. Madadi, and S. Escalera, “Neural cloth simulation,” ACM Transactions on Graphics (TOG), vol. 41, no. 6, pp. 1–14, 2022.
  32. R. Lagneau, A. Krupa, and M. Marchal, “Active deformation through visual servoing of soft objects,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 8978–8984.
  33. J. Qi, G. Ma, P. Zhou, H. Zhang, Y. Lyu, and D. Navarro-Alarcon, “Towards latent space based manipulation of elastic rods using autoencoder models and robust centerline extractions,” Advanced Robotics, vol. 36, no. 3, pp. 101–115, 2022.
  34. F. Makiyeh, M. Marchal, F. Chaumette, and A. Krupa, “Indirect positioning of a 3d point on a soft object using rgb-d visual servoing and a mass-spring model,” in 2022 17th International Conference on Control, Automation, Robotics and Vision (ICARCV).   IEEE, 2022, pp. 235–242.
  35. Z. Zhang, T. M. Bieze, J. Dequidt, A. Kruszewski, and C. Duriez, “Visual servoing control of soft robots based on finite element model,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 2895–2901.

Summary

We haven't generated a summary for this paper yet.