Structure, control, and dynamics of altermagnetic textures (2403.10218v3)
Abstract: We present a phenomenological theory of altermagnets, that captures their unique magnetization dynamics and allows modelling magnetic textures in this new magnetic phase. Focusing on the prototypical d-wave altermagnets, e.g. RuO$_2$, we can explain intuitively the characteristic lifted degeneracy of their magnon spectra, by the emergence of an effective sublattice-dependent anisotropic spin stiffness arising naturally from the phenomenological theory. We show that as a consequence the altermagnetic domain walls, in contrast to antiferromagnets, have a finite gradient of the magnetization, with its strength and gradient direction connected to the altermagnetic anisotropy, even for 180$\circ$ domain walls. This gradient generates a ponderomotive force in the domain wall in the presence of a strongly inhomogeneous external magnetic field, which may be achieved through magnetic force microscopy techniques. The motion of these altermagentic domain walls is also characterized by an anisotropic Walker breakdown, with much higher speed limits of propagation than ferromagnets but lower than antiferromagnets.
- L. Šmejkal, J. Sinova, and T. Jungwirth, Beyond Conventional Ferromagnetism and Antiferromagnetism: A Phase with Nonrelativistic Spin and Crystal Rotation Symmetry, Physical Review X 12, 031042 (2022a).
- L. Šmejkal, J. Sinova, and T. Jungwirth, Emerging Research Landscape of Altermagnetism, Physical Review X 12, 040501 (2022b), arXiv:2204.10844 .
- O. Gomonay, K. Yamamoto, and J. Sinova, Spin caloric effects in antiferromagnets assisted by an external spin current, Journal of Physics D: Applied Physics 51, 264004 (2018), arXiv:1803.07949 .
- S. M. Rezende, A. Azevedo, and R. L. Rodríguez-Suárez, Introduction to antiferromagnetic magnons, Journal of Applied Physics 126, 151101 (2019).
- E. W. Hodt and J. Linder, Spin pumping in an altermagnet/normal metal bilayer, Arxiv Preprint (2023), arXiv:2310.15220 .
- B. Brekke, A. Brataas, and A. Sudbø, Two-dimensional altermagnets: Superconductivity in a minimal microscopic model, Physical Review B 108, 224421 (2023), arXiv:2308.08606 .
- S. Bhowal and N. A. Spaldin, Magnetic octupoles as the order parameter for unconventional antiferromagnetism, Arxiv Preprint (2022), arXiv:2212.03756 .
- D. Rugar, C. S. Yannoni, and J. A. Sidles, Mechanical detection of magnetic resonance, Nature 360, 563 (1992).
- O. Gomonay, T. Jungwirth, and J. Sinova, High Antiferromagnetic Domain Wall Velocity Induced by Néel Spin-Orbit Torques, Physical Review Letters 117, 017202 (2016), arXiv:1602.06766 .
- E. V. Gomonai, B. A. Ivanov, and V. A. L’vov, Symmetry and dynamics of domain walls, Sov. Phys. JETP 70, 174 (1990).
- N. L. Schryer and L. R. Walker, The motion of 180° domain walls in uniform dc magnetic fields, Journal of Applied Physics 45, 5406 (1974).
- I. E. Dzialoshinskii, JETP, Tech. Rep. (1958).
- I. Dzyaloshinskii, A thermodynamic theory of ”weak” ferromagnetism of antiferromagnetics, Journal of Physics and Chemistry of Solids 4, 241 (1958).
- P. A. McClarty and J. G. Rau, Landau Theory of Altermagnetism, (2023), arXiv:2308.04484 .
- K. M. D. Hals, Y. Tserkovnyak, and A. Brataas, Phenomenology of Current-Induced Dynamics in Antiferromagnets, Physical Review Letters 106, 107206 (2011), arXiv:1012.5655 .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.