Bicausal optimal transport for SDEs with irregular coefficients (2403.09941v3)
Abstract: We solve constrained optimal transport problems in which the marginal laws are given by the laws of solutions of stochastic differential equations (SDEs). We consider SDEs with irregular coefficients, making only minimal regularity assumptions. We show that the so-called synchronous coupling is optimal among bicausal couplings, that is couplings that respect the flow of information encoded in the stochastic processes. Our results provide a method to numerically compute the adapted Wasserstein distance between laws of SDEs with irregular coefficients. We show that this can be applied to quantifying model uncertainty in stochastic optimisation problems. Moreover, we introduce a transformation-based semi-implicit numerical scheme and establish the first strong convergence result for SDEs with exponentially growing and discontinuous drift.
- D. J. Aldous. Weak convergence and general theory of processes. Unpublished monograph: Department of Statistics, University of California, Berkeley, July 1981.
- Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second edition, 2008. ISBN 978-3-7643-8721-1.
- B. Analui and G. C. Pflug. On distributionally robust multiperiod stochastic optimization. Comput. Manag. Sci., 11:197–220, 2014.
- Causal transport in discrete time and applications. SIAM J. Optim., 27(4):2528–2562, 2017. ISSN 1052-6234. doi: 10.1137/16M1080197.
- Adapted Wasserstein distances and stability in mathematical finance. Finance Stoch., 24(3):601–632, 2020a. ISSN 0949-2984. doi: 10.1007/s00780-020-00426-3.
- All adapted topologies are equal. Probab. Theory Relat. Fields, 178(3-4):1125–1172, 2020b. ISSN 0178-8051. doi: 10.1007/s00440-020-00993-8.
- Adapted Wasserstein distance between the laws of SDEs. 2022. arXiv:2209.03243.
- D. Bartl and J. Wiesel. Sensitivity of multiperiod optimization problems with respect to the adapted wasserstein distance. SIAM J. Financ. Math., 14(2):704–720, 2023.
- Euler scheme for sdes with non-lipschitz diffusion coefficient: strong convergence. ESAIM Probab. Stat., 12:1–11, 2008.
- J. Bion-Nadal and D. Talay. On a Wasserstein-type distance between solutions to stochastic differential equations. Ann. Appl. Probab., 29(3):1609–1639, 2019. ISSN 1050-5164. doi: 10.1214/18-AAP1423.
- L-Superadditive Structure Functions. Adv. in Appl. Probab., 21(4):919–929, 1989. ISSN 0001-8678. doi: 10.2307/1427774.
- Adapted topologies and higher rank signatures. Ann. Appl. Probab., 33(3):2136–2175, 2023.
- Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math., 44(4):375–417, 1991. ISSN 0010-3640. doi: 10.1002/cpa.3160440402.
- P. Cheridito and S. Eckstein. Optimal transport and Wasserstein distances for causal models. 2023. arXiv:2303.14085.
- M. Cuturi. Sinkhorn Distances: Lightspeed Computation of Optimal Transport. In Proceedings of the 26th International Conference on Neural Information Processing Systems, volume 2, pages 2292–2300, 2013.
- D. J. Daley. Stochastically monotone Markov chains. Z. Wahrsch. Verw. Gebiete, 10(4):305–317, 1968.
- K. Dareiotis and M. Gerencsér. On the regularisation of the noise for the Euler–Maruyama scheme with irregular drift. Electron. J. Probab., 25, 2020.
- Quantifying a convergence theorem of Gyöngy and Krylov. Ann. Appl. Probab., 33(3):2291–2323, 2023.
- S. Eckstein and G. Pammer. Computational methods for adapted optimal transport. Ann. Appl. Probab., 34(1A):675 – 713, 2024. doi: 10.1214/23-AAP1975.
- On optimal error rates for strong approximation of SDEs with a drift coefficient of fractional Sobolev regularity. 2024. arXiv:2402.13732.
- The Milstein scheme for singular SDEs with Hölder continuous drift. 2023. arXiv:2305.16004.
- Controlled Stochastic Processes. Springer New York, New York, NY, 1979. ISBN 978-1-4612-6204-6 978-1-4612-6202-2. doi: 10.1007/978-1-4612-6202-2.
- M. Giles and L. Szpruch. Multilevel Monte Carlo methods for applications in finance. In Interdisciplinary Mathematical Sciences, volume 14, pages 3–47. World Scientific, Jan. 2013. ISBN 978-981-4436-42-7 978-981-4436-43-4. doi: 10.1142/9789814436434˙0001.
- I. Gyöngy. A note on Euler’s approximations. Potential Anal., 8(3):205–216, 1998. ISSN 09262601. doi: 10.1023/A:1008605221617.
- I. Gyöngy and N. Krylov. Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Relat. Fields, 105(2):143–158, June 1996. ISSN 0178-8051, 1432-2064. doi: 10.1007/BF01203833.
- I. Gyöngy and M. Rásonyi. A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients. Stoch. Proc. Appl., 121(10):2189–2200, 2011.
- M. Hefter and A. Jentzen. On arbitrarily slow convergence rates for strong numerical approximations of Cox–Ingersoll–Ross processes and squared Bessel processes. Finance Stoch., 23(1):139–172, 2019.
- Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal., 40(3):1041–1063, 2002. ISSN 0036-1429, 1095-7170. doi: 10.1137/S0036142901389530.
- H. Hu and S. Gan. Strong convergence of the tamed Euler scheme for scalar SDEs with superlinearly growing and discontinuous drift coefficient. 2022. arXiv:2206.00088.
- Y. Hu. Semi-implicit Euler–Maruyama scheme for stiff stochastic equations. In H. Körezlioglu, B. Øksendal, and A. S. Üstünel, editors, Stochastic Analysis and Related Topics V, pages 183–202. Birkhäuser, 1996.
- M. Hutzenthaler and A. Jentzen. Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients. Mem. Am. Math. Soc., 236(1112), 2015. ISSN 0065-9266, 1947-6221. doi: 10.1090/memo/1112.
- Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. A: Math. Phys. Eng. Sci., 467(2130):1563–1576, June 2011. ISSN 1364-5021, 1471-2946. doi: 10.1098/rspa.2010.0348.
- Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab., 22(4), Aug. 2012. ISSN 1050-5164. doi: 10.1214/11-AAP803.
- O. Kallenberg. Foundations of modern probability. Probability and its Applications (New York). Springer-Verlag, New York, 1997. ISBN 0-387-94957-7.
- L. Kantorovich. On the translocation of masses. C. R. (Doklady) Acad. Sci. URSS (N.S.), 37:199–201, 1942.
- I. Karatzas and S. E. Shreve. Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991. ISBN 0-387-97655-8. doi: 10.1007/978-1-4612-0949-2.
- P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations. Springer Berlin Heidelberg, Berlin, Heidelberg, 1992. ISBN 978-3-642-08107-1 978-3-662-12616-5. doi: 10.1007/978-3-662-12616-5.
- H. Knothe. Contributions to the theory of convex bodies. Mich. Math. J., 4:39–52, 1957. ISSN 0026-2285.
- N. V. Krylov. A simple proof of the existence of a solution of Itô’s equation with monotone coefficients. Theory Probab. Appl., 35(3):583–587, 1991. ISSN 0040-585X, 1095-7219. doi: 10.1137/1135082.
- R. Lassalle. Causal transference plans and their Monge-Kantorovich problems. Stoch. Anal. Appl., 36(3):452–484, 2018.
- G. Leobacher and M. Szölgyenyi. A numerical method for SDEs with discontinuous drift. BIT Numer. Math., 56(1):151–162, 2016.
- G. Leobacher and M. Szölgyenyi. A strong order 1/2121/21 / 2 method for multidimensional SDEs with discontinuous drift. Ann. Appl. Probab., 27(4), 2017. ISSN 1050-5164. doi: 10.1214/16-AAP1262.
- G. Leobacher and M. Szölgyenyi. Numerical methods for SDEs with drift discontinuous on a set of positive reach. Internationale Mathematische Nachrichten, 235(1):1–16, 2017.
- G. Leobacher and M. Szölgyenyi. Convergence of the Euler–Maruyama method for multidimensional SDEs with discontinuous drift and degenerate diffusion coefficient. Numer. Math., 138(1):219–239, 2018.
- X. Mao and L. Szpruch. Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Comput. Appl. Math., 238:14–28, 2013a. ISSN 03770427. doi: 10.1016/j.cam.2012.08.015.
- X. Mao and L. Szpruch. Strong convergence rates for backward Euler–Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients. Stochastics, 85(1):144–171, 2013b. ISSN 1744-2508, 1744-2516. doi: 10.1080/17442508.2011.651213.
- G. N. Milstein. Approximate integration of stochastic differential equations. Theory Probab. Appl., 19(3):557–562, 1975.
- Numerical methods for stochastic systems preserving symplectic structure. SIAM J. Numer. Anal., 40(4):1583–1604, 2002. ISSN 0036-1429, 1095-7170. doi: 10.1137/S0036142901395588.
- G. Monge. Mémoire sur la théorie des déblais et des remblais. Histoire de l’académie Royale des Sciences de Paris, 1781.
- T. Müller-Gronbach and L. Yaroslavtseva. On the performance of the Euler–Maruyama scheme for SDEs with discontinuous drift coefficient. Ann. Inst. Henri Poincaré Prob. Stat., 56(2), 2020. ISSN 0246-0203. doi: 10.1214/19-AIHP997.
- T. Müller-Gronbach and L. Yaroslavtseva. A strong order 3/4 method for SDEs with discontinuous drift coefficient. IMA J. Numer. Anal., 42(1):229–259, 2022.
- T. Müller-Gronbach and L. Yaroslavtseva. Sharp lower error bounds for strong approximation of SDEs with discontinuous drift coefficient by coupling of noise. Ann. Appl. Probab., 33(2):1102–1135, 2023.
- Existence, uniqueness and approximation of solutions of SDEs with superlinear coefficients in the presence of discontinuities of the drift coefficient. 2022. arXiv:2204.02343.
- A. Neuenkirch and M. Szölgyenyi. The Euler-Maruyama scheme for SDEs with irregular drift: Convergence rates via reduction to a quadrature problem. IMA J. Numer.Anal., 41(2):1164–1196, 2021. ISSN 0272-4979, 1464-3642. doi: 10.1093/imanum/draa007.
- An adaptive Euler–Maruyama scheme for stochastic differential equations with discontinuous drift and its convergence analysis. SIAM J. Numer. Anal., 57(1):378–403, 2019.
- H.-L. Ngo and D. Taguchi. On the Euler–Maruyama approximation for one-dimensional stochastic differential equations with irregular coefficients. IMA J. Numer. Anal., 37(4):1864–1883, 2017a.
- H.-L. Ngo and D. Taguchi. Strong convergence for the Euler–Maruyama approximation of stochastic differential equations with discontinuous coefficients. Statist. Probab. Lett., 125:55–63, 2017b.
- H.-L. Ngo and D. Taguchi. On the Euler–Maruyama scheme for SDEs with bounded variation and Hölder continuous coefficients. Math. Comput. Simulation, 161:102–112, 2019.
- G. Peyré and M. Cuturi. Computational optimal transport. Foundations and Trends in Machine Learning, 11(5-6):355–607, 2019.
- G. C. Pflug and A. Pichler. A distance for multistage stochastic optimization models. SIAM J. Optim., 22(1):1–23, 2012. ISSN 1052-6234. doi: 10.1137/110825054.
- G. C. Pflug and A. Pichler. Multistage stochastic optimization. Springer Series in Operations Research and Financial Engineering. Springer, Cham, 2014. ISBN 978-3-319-08842-6; 978-3-319-08843-3. doi: 10.1007/978-3-319-08843-3.
- A. Pichler and M. Weinhardt. The nested Sinkhorn divergence to learn the nested distance. Comput. Manag. Sci., pages 1–25, 2021.
- P. Przybyłowicz and M. Szölgyenyi. Existence, uniqueness, and approximation of solutions of jump-diffusion SDEs with discontinuous drift. Appl. Math. Comput., 403:126191, 2021.
- Existence and uniqueness of solutions of SDEs with discontinuous drift and finite activity jumps. Statist. Probab. Lett., 174(109072), 2021.
- Lower error bounds and optimality of approximation for jump-diffusion SDEs with discontinuous drift. 2023. arXiv:2303.05945.
- A higher order approximation method for jump-diffusion SDEs with discontinuous drift coefficient. J. Math. Anal. Appl., 2024. To appear. arXiv:2211.08739.
- D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, third edition, 1999. ISBN 3-540-64325-7.
- M. Rosenblatt. Remarks on a multivariate transformation. Ann. Math. Stat., 23(3):470–472, 1952.
- L. Rüschendorf. The Wasserstein distance and approximation theorems. Z. Wahrsch. Verw. Gebiete, 70(1):117–129, 1985. ISSN 0044-3719. doi: 10.1007/BF00532240.
- S. Sabanis. A note on tamed Euler approximations. Electron. Commun. Prob., 18, 2013. ISSN 1083-589X. doi: 10.1214/ECP.v18-2824.
- F. Santambrogio. Optimal transport for applied mathematicians, volume 87 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Cham, 2015. ISBN 978-3-319-20827-5; 978-3-319-20828-2. doi: 10.1007/978-3-319-20828-2. Calculus of variations, PDEs, and modeling.
- A. V. Skorokhod. Studies in the theory of random processes. Translated from the Russian by Scripta Technica, Inc. Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965.
- K. Spendier and M. Szölgyenyi. Convergence of the tamed-Euler–Maruyama method for SDEs with discontinuous and polynomially growing drift. 2023. To appear in A. Hinrichs, P. Kritzer, F. Pillichshammer (eds.): Monte Carlo and Quasi-Monte Carlo Methods 2022, arXiv:2212.08839.
- D. Stroock and S. Varadhan. Multidimensional diffusion processes, volume 233 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1979. ISBN 3-540-90353-4.
- M. Szölgyenyi. Stochastic differential equations with irregular coefficients: mind the gap! Internationale Mathematische Nachrichten, 246:43–56, 2021.
- D. Talay. Resolution trajectorielle et analyse numerique des equations differentielles stochastiques. Stochastics, 9(4):275–306, Jan. 1983. ISSN 0090-9491. doi: 10.1080/17442508308833257.
- C. Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003. ISBN 0-8218-3312-X.
- C. Villani. Optimal Transport, Old and New, volume 338 of Grundlehren der mathematischen Wissenschaften. Springer, 2009.
- T. Yamada and S. Watanabe. On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ., 11(1):155–167, 1971.
- L. Yaroslavtseva. An adaptive strong order 1 method for SDEs with discontinuous drift coefficient. J. Math. Anal. Appl., 513(2):126180, 2022.
- A. K. Zvonkin. A transformation of the phase space of a diffusion process that removes the drift. Math. USSR Sbornik, 22(1):129–149, Feb. 1974. ISSN 0025-5734. doi: 10.1070/SM1974v022n01ABEH001689.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.