Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

GPT on a Quantum Computer (2403.09418v1)

Published 14 Mar 2024 in quant-ph

Abstract: LLMs such as ChatGPT have transformed how we interact with and understand the capabilities of AI. However, the intersection of LLMs with the burgeoning field of Quantum Machine Learning (QML) is only in its nascent stages. This paper presents an exploration of this niche by detailing a comprehensive framework for implementing the foundational Transformer architecture -- integral to ChatGPT -- within a quantum computing paradigm. We meticulously design quantum circuits that implement adapted versions of the transformer's core components and the generative pre-training phase. By integrating quantum computing with LLMs, we aspire to open new avenues for research in QML and contribute to the ongoing evolution of AI technologies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. Travis L Scholten, Carl J Williams, Dustin Moody, Michele Mosca, William Hurley, William J Zeng, Matthias Troyer, Jay M Gambetta, et al., “Assessing the benefits and risks of quantum computers,” arXiv preprint arXiv:2401.16317  (2024).
  2. Marco Cerezo, Guillaume Verdon, Hsin-Yuan Huang, Lukasz Cincio,  and Patrick J Coles, “Challenges and opportunities in quantum machine learning,” Nature Computational Science 2, 567–576 (2022).
  3. Junyu Liu, Minzhao Liu, Jin-Peng Liu, Ziyu Ye, Yunfei Wang, Yuri Alexeev, Jens Eisert,  and Liang Jiang, “Towards provably efficient quantum algorithms for large-scale machine-learning models,” Nature Communications 15, 434 (2024).
  4. Yeqi Gao, Zhao Song, Xin Yang,  and Ruizhe Zhang, “Fast quantum algorithm for attention computation,” arXiv preprint arXiv:2307.08045  (2023).
  5. Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al., “Improving language understanding by generative pre-training,”  (2018).
  6. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,  and Illia Polosukhin, “Attention is all you need,” in Advances in neural information processing systems, Vol. 30 (2017).
  7. Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser,  and Noam Shazeer, “Generating wikipedia by summarizing long sequences,” arXiv preprint arXiv:1801.10198  (2018).
  8. Larry Medsker and Lakhmi C Jain, Recurrent neural networks: design and applications (CRC press, 1999).
  9. Benyamin Ghojogh and Ali Ghodsi, “Attention mechanism, transformers, bert, and gpt: tutorial and survey,” OSF Preprints  (2020).
  10. Daniel Jurafsky and James H. Martin, Speech and Language Processing, 3rd ed. (Pearson, 2021).
  11. Peter F Brown, Vincent J Della Pietra, Stephen A Della Pietra,  and Robert L Mercer, “Class-based n-gram models of natural language,” Computational linguistics 18, 467–479 (1992).
  12. Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term memory,” Neural Computation 9, 1735–1780 (1997).
  13. Tomas Mikolov, Kai Chen, Greg Corrado,  and Jeff Dean, “Efficient estimation of word representations in vector space,” arXiv preprint arXiv:1301.3781  (2013).
  14. Jeffrey Pennington, Richard Socher,  and Christopher D Manning, “Glove: Global vectors for word representation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (2014) pp. 1532–1543.
  15. Tomas Mikolov, Quoc V Le,  and Ilya Sutskever, “Computing numeric representations of words in a high-dimensional space,” in Machine Learning and Knowledge Discovery in Databases (Springer, 2015) pp. 522–536.
  16. Pei Yuan and Shengyu Zhang, “Optimal (controlled) quantum state preparation and improved unitary synthesis by quantum circuits with any number of ancillary qubits,” Quantum 7, 956 (2023).
  17. Jiachen Lu, Jinghan Yao, Junge Zhang, Xiatian Zhu, Hang Xu, Weiguo Gao, Chunjing Xu, Tao Xiang,  and Li Zhang, “Soft: Softmax-free transformer with linear complexity,” Advances in Neural Information Processing Systems 34, 21297–21309 (2021).
  18. Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng Kong,  and Yiran Zhong, “cosformer: Rethinking softmax in attention,” arXiv preprint arXiv:2202.08791  (2022).
  19. Quynh T Nguyen, Bobak T Kiani,  and Seth Lloyd, “Block-encoding dense and full-rank kernels using hierarchical matrices: applications in quantum numerical linear algebra,” Quantum 6, 876 (2022).
  20. Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,  and Yoshua Bengio, “Graph attention networks,” in Proc. of ICLR (2017).
  21. Kaiming He, Xiangyu Zhang, Shaoqing Ren,  and Jian Sun, “Deep residual learning for image recognition,” in Proc. of CVPR (2016) pp. 770–778.
  22. Jonathan Allcock, Chang-Yu Hsieh, Iordanis Kerenidis,  and Shengyu Zhang, “Quantum algorithms for feedforward neural networks,” ACM Transactions on Quantum Computing 1 (2020).
  23. Gilles Brassard, Peter Hoyer, Michele Mosca,  and Alain Tapp, “Quantum amplitude amplification and estimation,” Contemporary Mathematics 305, 53–74 (2002).
  24. Jonas Landman, “Quantum algorithms for unsupervised machine learning and neural networks,” arXiv preprint arXiv:2111.03598  (2021).
  25. Yidong Liao, Min-Hsiu Hsieh,  and Chris Ferrie, “Quantum optimization for training quantum neural networks,” arXiv preprint arXiv:2103.17047  (2021).
  26. Christoph Sünderhauf, Earl Campbell,  and Joan Camps, “Block-encoding structured matrices for data input in quantum computing,” Quantum 8, 1226 (2024).
  27. Andrew M. Childs and Nathan Wiebe, “Hamiltonian simulation using linear combinations of unitary operations,” arXiv:1202.5822  (2012).
  28. Lin Lin, “Lecture notes on quantum algorithms for scientific computation,” arXiv preprint arXiv:2201.08309  (2022).
  29. Martin Larocca, Nathan Ju, Diego García-Martín, Patrick J. Coles,  and M. Cerezo, “Theory of overparametrization in quantum neural networks,” Nature Computational Science 3, 542––551 (2023).
  30. Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow,  and Jay M. Gambetta, “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets,” Nature 549, 242–246 (2017).
  31. Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor G Rieffel, Davide Venturelli,  and Rupak Biswas, “From the quantum approximate optimization algorithm to a quantum alternating operator ansatz,” Algorithms 12, 34 (2019).
  32. Alexandre Choquette, Agustin Di Paolo, Panagiotis Kl Barkoutsos, David Sénéchal, Ivano Tavernelli,  and Alexandre Blais, “Quantum-optimal-control-inspired ansatz for variational quantum algorithms,” Physical Review Research 3, 023092 (2021).
Citations (4)

Summary

  • The paper implements a quantum version of the GPT architecture, adapting core components like multi-head self-attention and feed-forward networks using quantum circuits.
  • It details the methodology for converting classical operations, including input encoding, masked self-attention, and residual connections, into quantum-friendly procedures.
  • The research highlights future implications for quantum machine learning, suggesting enhanced efficiency and novel strategies for parameter optimization on quantum hardware.

Implementing Generative Pre-trained Transformer (GPT) Architecture on Quantum Computers

Introduction

The integration of Quantum Computing (QC) with LLMs represents a frontier in computational research. The Generative Pre-trained Transformer (GPT) architecture, a significant advancement in NLP, has shown promise in various tasks such as text generation, translation, and summarization. This paper explores the implementation of GPT's foundational architecture on quantum computers, focusing on key components like the multi-head masked self-attention mechanism, feed-forward networks, residual connections, and the generative pre-training phase.

Quantum Implementation of GPT Components

Input Encoding

The transition from classical to quantum implementation begins with the encoding of input data into quantum states. Input vectors are mapped to quantum states via amplitude encoding, facilitating their processing on quantum circuits. This encoding leverages two quantum registers to represent the indices and features of the input data.

Attention Mechanism

The core of GPT's architecture, the multi-head self-attention mechanism, is adapted for quantum computing. Quantum circuits are designed to perform the computation of attention scores between pairs of input vectors, utilizing quantum versions of linear transformations for query, key, and value vectors. The adaptation omits some elements like the softmax function, focusing instead on capturing the essential functionalities of attention through quantum operations.

Masked Self-Attention

To implement the masking operation in a quantum-friendly manner, the attention scores are adjusted to zero for future positions in the sequence, mirroring the masking effect. This adaptation ensures the generation of contextually relevant predictions while adhering to the principles of causal masking in LLMs.

Feed-Forward Networks

The quantum implementation of feed-forward networks within GPT involves a sequence of quantum operations that mimic the classical network's behavior. This includes the evaluation of activation functions like ReLU at a quantum level, showcasing a novel approach to implementing non-linear transformations in quantum circuits.

Residual Connections

Quantum circuits facilitate the addition of input vectors and attention vectors, achieving the functionality of residual connections. This mechanism promotes the flow of information across different layers of the model, enhancing its learning capacity without directly translating classical arithmetic operations onto quantum hardware.

Generative Pre-training on Quantum Computers

The generative pre-training phase, crucial for the model's ability to generate coherent text, is adapted for quantum computation by utilizing quantum circuits to evolve the model's parameters based on the training data. This process entails the quantum evaluation of loss functions and the adaptation of parameter adjustment strategies suitable for quantum hardware.

Future Work and Implications

The quantum implementation of GPT opens up new avenues for research in quantum machine learning (QML) and artificial intelligence. Future developments may involve optimizing quantum circuits for efficiency, exploring quantum algorithms for parameter optimization, and expanding the model's capabilities through quantum-enhanced functionalities.

This exploration signifies a step towards realizing more powerful and efficient AI models by leveraging quantum computing's potential. It highlights the interdisciplinary nature of advancing AI technologies and sets the groundwork for future breakthroughs in integrating quantum computing with state-of-the-art machine learning frameworks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 8 posts and received 52 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube