Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong Error Bounds for Trotter & Strang-Splittings and Their Implications for Quantum Chemistry (2312.08044v2)

Published 13 Dec 2023 in quant-ph, cs.NA, math-ph, math.MP, and math.NA

Abstract: Efficient error estimates for the Trotter product formula are central in quantum computing, mathematical physics, and numerical simulations. However, the Trotter error's dependency on the input state and its application to unbounded operators remains unclear. Here, we present a general theory for error estimation, including higher-order product formulas, with explicit input state dependency. Our approach overcomes two limitations of the existing operator-norm estimates in the literature. First, previous bounds are too pessimistic as they quantify the worst-case scenario. Second, previous bounds become trivial for unbounded operators and cannot be applied to a wide class of Trotter scenarios, including atomic and molecular Hamiltonians. Our method enables analytical treatment of Trotter errors in chemistry simulations, illustrated through a case study on the hydrogen atom. Our findings reveal: (i) for states with fat-tailed energy distribution, such as low-angular-momentum states of the hydrogen atom, the Trotter error scales worse than expected (sublinearly) in the number of Trotter steps; (ii) certain states do not admit an advantage in the scaling from higher-order Trotterization, and thus, the higher-order Trotter hierarchy breaks down for these states, including the hydrogen atom's ground state; (iii) the scaling of higher-order Trotter bounds might depend on the order of the Hamiltonians in the Trotter product for states with fat-tailed energy distribution. Physically, the enlarged Trotter error is caused by the atom's ionization due to the Trotter dynamics. Mathematically, we find that certain domain conditions are not satisfied by some states so higher moments of the potential and kinetic energies diverge. Our analytical error analysis agrees with numerical simulations, indicating that we can estimate the state-dependent Trotter error scaling genuinely.

Citations (8)

Summary

We haven't generated a summary for this paper yet.