Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Partitioned Quantum Subspace Expansion (2403.08868v3)

Published 13 Mar 2024 in quant-ph and physics.comp-ph

Abstract: We present an iterative generalisation of the quantum subspace expansion algorithm used with a Krylov basis. The iterative construction connects a sequence of subspaces via their lowest energy states. Diagonalising a Hamiltonian in a given Krylov subspace requires the same quantum resources in both the single step and sequential cases. We propose a variance-based criterion for determining a good iterative sequence and provide numerical evidence that these good sequences display improved numerical stability over a single step in the presence of finite sampling noise. Implementing the generalisation requires additional classical processing with a polynomial overhead in the subspace dimension. By exchanging quantum circuit depth for additional measurements the quantum subspace expansion algorithm appears to be an approach suited to near term or early error-corrected quantum hardware. Our work suggests that the numerical instability limiting the accuracy of this approach can be substantially alleviated in a parameter-free way.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. “Variational quantum algorithms for nonlinear problems”. Physical Review A 101, 010301 (2020). arxiv:1907.09032.
  2. “Solving nonlinear differential equations with differentiable quantum circuits”. Physical Review A 103, 052416 (2021). arxiv:2011.10395.
  3. “Non-linear quantum-classical scheme to simulate non-equilibrium strongly correlated fermionic many-body dynamics”. Scientific Reports 6, 32940 (2016). arxiv:1510.05703.
  4. “Few-qubit quantum-classical simulation of strongly correlated lattice fermions”. EPJ Quantum Technology 3, 11 (2016). arxiv:1606.04839.
  5. “Coarse grained intermolecular interactions on quantum processors”. Physical Review A 105, 062409 (2022). arxiv:2110.00968.
  6. “Recompilation-enhanced simulation of electron–phonon dynamics on IBM quantum computers”. New Journal of Physics 24, 093017 (2022).
  7. “Variational Quantum Algorithms for Computational Fluid Dynamics”. AIAA Journal 61, 1885–1894 (2023).
  8. “Subspace methods for electronic structure simulations on quantum computers” (2023). arxiv:2312.00178.
  9. “Quantum advantage in learning from experiments”. Science 376, 1182–1186 (2022).
  10. “Variational Quantum Fidelity Estimation”. Quantum 4, 248 (2020). arxiv:1906.09253.
  11. “Variational Quantum Algorithms”. Nature Reviews Physics 3, 625–644 (2021). arxiv:2012.09265.
  12. “A variational eigenvalue solver on a photonic quantum processor”. Nature Communications 5, 4213 (2014).
  13. “A Multireference Quantum Krylov Algorithm for Strongly Correlated Electrons”. Journal of Chemical Theory and Computation 16, 2236–2245 (2020).
  14. “Hybrid Quantum-Classical Hierarchy for Mitigation of Decoherence and Determination of Excited States”. Physical Review A 95, 042308 (2017). arxiv:1603.05681.
  15. “Decoding quantum errors with subspace expansions”. Nature Communications 11, 636 (2020).
  16. “Generalized Quantum Subspace Expansion”. Physical Review Letters 129, 020502 (2022).
  17. “Virtual Distillation for Quantum Error Mitigation”. Physical Review X 11, 041036 (2021).
  18. Bálint Koczor. “Exponential Error Suppression for Near-Term Quantum Devices”. Physical Review X 11, 031057 (2021).
  19. “Error mitigation for short-depth quantum circuits”. Physical Review Letters 119, 180509 (2017). arxiv:1612.02058.
  20. Y. Saad. “On the Rates of Convergence of the Lanczos and the Block-Lanczos Methods”. SIAM Journal on Numerical Analysis 17, 687–706 (1980).
  21. “Quantum Filter Diagonalization: Quantum Eigendecomposition without Full Quantum Phase Estimation” (2019). arxiv:1909.08925.
  22. “Real-Time Evolution for Ultracompact Hamiltonian Eigenstates on Quantum Hardware”. PRX Quantum 3, 020323 (2022).
  23. “Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution”. Nature Physics 16, 205–210 (2020).
  24. “Quantum Power Method by a Superposition of Time-Evolved States”. PRX Quantum 2, 010333 (2021).
  25. “Quantum Krylov subspace algorithms for ground and excited state energy estimation”. Physical Review A 105, 022417 (2022). arxiv:2109.06868.
  26. “Iterative quantum-assisted eigensolver”. Physical Review A 104, L050401 (2021).
  27. “Sampling error analysis in quantum krylov subspace diagonalization” (2023). arxiv:2307.16279.
  28. “Exact and efficient Lanczos method on a quantum computer”. Quantum 7, 1018 (2023). arxiv:2208.00567.
  29. “Hamiltonian Simulation by Qubitization”. Quantum 3, 163 (2019).
  30. “Solving lattice gauge theories using the quantum Krylov algorithm and qubitization” (2024). arxiv:2403.08859.
  31. Christopher Conway Paige. “The computation of eigenvalues and eigenvectors of very large sparse matrices.”. PhD thesis. University of London.  (1971).
  32. “A theory of quantum subspace diagonalization”. SIAM Journal on Matrix Analysis and Applications 43, 1263–1290 (2022). arxiv:2110.07492.
  33. Beresford N Parlett. “The symmetric eigenvalue problem”. SIAM.  (1998).
  34. “Evidence for the utility of quantum computing before fault tolerance”. Nature 618, 500–505 (2023).
  35. “Many-Body Localization and Thermalization in Quantum Statistical Mechanics”. Annual Review of Condensed Matter Physics 6, 15–38 (2015).
  36. “Toward the first quantum simulation with quantum speedup”. Proceedings of the National Academy of Sciences 115, 9456–9461 (2018). arxiv:1711.10980.
  37. “Many-body localization edge in the random-field Heisenberg chain”. Physical Review B 91, 081103 (2015). arxiv:1411.0660.
  38. “Modern quantum chemistry: Introduction to advanced electronic structure theory”. Dover Publications. New York (1996).
  39. “The Bravyi-Kitaev transformation for quantum computation of electronic structure”. The Journal of Chemical Physics 137, 224109 (2012). arxiv:1208.5986.
  40. “PySCF: The Python-based simulations of chemistry framework”. Wiley Interdisciplinary Reviews: Computational Molecular Science 8, e1340 (2018).
  41. “Logical quantum processor based on reconfigurable atom arrays”. NaturePages 1–3 (2023).
  42. “Suppressing quantum errors by scaling a surface code logical qubit”. Nature 614, 676–681 (2023).
  43. “Realizing Repeated Quantum Error Correction in a Distance-Three Surface Code”. Nature 605, 669–674 (2022). arxiv:2112.03708.
  44. “Implementing Fault-tolerant Entangling Gates on the Five-qubit Code and the Color Code” (2022). arxiv:2208.01863.
  45. Andrew Richards. “University of Oxford Advanced Research Computing” (2015).
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.