Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Measurements of the charge ratio and polarization of cosmic-ray muons with the Super-Kamiokande detector (2403.08619v2)

Published 13 Mar 2024 in hep-ex and astro-ph.HE

Abstract: We present the results of the charge ratio ($R$) and polarization ($P{\mu}_{0}$) measurements using the decay electron events collected from 2008 September to 2022 June by the Super-Kamiokande detector. Because of its underground location and long operation, we performed high precision measurements by accumulating cosmic-ray muons. We measured the muon charge ratio to be $R=1.32 \pm 0.02$ $(\mathrm{stat.}{+}\mathrm{syst.})$ at $E_{\mu}\cos \theta_{\mathrm{Zenith}}=0.7{+0.3}_{-0.2}$ $\mathrm{TeV}$, where $E_{\mu}$ is the muon energy and $\theta_{\mathrm{Zenith}}$ is the zenith angle of incoming cosmic-ray muons. This result is consistent with the Honda flux model while this suggests a tension with the $\pi K$ model of $1.9\sigma$. We also measured the muon polarization at the production location to be $P{\mu}_{0}=0.52 \pm 0.02$ $(\mathrm{stat.}{+}\mathrm{syst.})$ at the muon momentum of $0.9{+0.6}_{-0.1}$ $\mathrm{TeV}/c$ at the surface of the mountain; this also suggests a tension with the Honda flux model of $1.5\sigma$. This is the most precise measurement ever to experimentally determine the cosmic-ray muon polarization near $1~\mathrm{TeV}/c$. These measurement results are useful to improve the atmospheric neutrino simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (92)
  1. Z. Maki, M. Nakagawa, and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28, 870 (1962).
  2. B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge, Sov. Phys. JETP 26, 984 (1968).
  3. Y. Fukuda et al. (The Super-Kamiokande collaboration), Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81, 1562 (1998), arXiv:hep-ex/9807003 .
  4. M. G. Aartsen et al. (The IceCube collaboration), Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore, Phys. Rev. Lett. 120, 071801 (2018), arXiv:1707.07081 [hep-ex] .
  5. K. Abe et al. (The Super-Kamiokande collaboration), Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV, Phys. Rev. D 97, 072001 (2018), arXiv:1710.09126 [hep-ex] .
  6. A. Albert et al. (The ANTARES collaboration), Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data, JHEP 06, 113, arXiv:1812.08650 [hep-ex] .
  7. S. Fukuda et al. (The Super-Kamiokande collaboration), Solar B-8 and hep neutrino measurements from 1258 days of Super-Kamiokande data, Phys. Rev. Lett. 86, 5651 (2001), arXiv:0103032 [hep-ex] .
  8. Q. R. Ahmad et al. (The SNO collaboration), Measurement of the rate of νe+d→p+p+e−→subscript𝜈𝑒𝑑𝑝𝑝superscript𝑒\nu_{e}+d\to p+p+e^{-}italic_ν start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT + italic_d → italic_p + italic_p + italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT interactions produced by 88{}^{8}start_FLOATSUPERSCRIPT 8 end_FLOATSUPERSCRIPTB solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87, 071301 (2001), arXiv:0106015 [nucl-ex] .
  9. Q. R. Ahmad et al. (The SNO collaboration), Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89, 011301 (2002), arXiv:0204008 [nucl-ex] .
  10. E. Aliu et al. (The K2K collaboration), Evidence for muon neutrino oscillation in an accelerator-based experiment, Phys. Rev. Lett. 94, 081802 (2005), arXiv:hep-ex/0411038 .
  11. P. Adamson et al. (The MINOS collaboration), Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107, 181802 (2011), arXiv:1108.0015 [hep-ex] .
  12. M. A. Acero et al. (The NOvA collaboration), First Measurement of Neutrino Oscillation Parameters using Neutrinos and Antineutrinos by NOvA, Phys. Rev. Lett. 123, 151803 (2019), arXiv:1906.04907 [hep-ex] .
  13. K. Abe et al. (The T2K collaboration), Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations, Nature 580, 339 (2020), [Erratum: Nature 583, E16 (2020)], arXiv:1910.03887 [hep-ex] .
  14. K. Eguchi et al. (The KamLAND collaboration), First results from KamLAND: Evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90, 021802 (2003), arXiv:hep-ex/0212021 .
  15. Y. Abe et al. (The Double Chooz collaboration), Indication of Reactor ν¯esubscript¯𝜈𝑒\bar{\nu}_{e}over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT Disappearance in the Double Chooz Experiment, Phys. Rev. Lett. 108, 131801 (2012), arXiv:1112.6353 [hep-ex] .
  16. F. P. An et al. (The Daya Bay collaboration), Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108, 171803 (2012), arXiv:1203.1669 [hep-ex] .
  17. T. K. Gaisser, T. Stanev, and G. Barr, Cosmic Ray Neutrinos in the Atmosphere, Phys. Rev. D 38, 85 (1988).
  18. P. A. Schreiner, J. Reichenbacher, and M. C. Goodman, Interpretation of the Underground Muon Charge Ratio, Astropart. Phys. 32, 61 (2009), arXiv:0906.3726 [hep-ph] .
  19. G. Barr, T. K. Gaisser, and T. Stanev, Flux of Atmospheric Neutrinos, Phys. Rev. D 39, 3532 (1989).
  20. H.-s. Lee, A New Calculation of Atmospheric Neutrino Flux, Nuovo Cim. B 105, 883 (1990).
  21. P. Lipari, Lepton spectra in the earth’s atmosphere, Astropart. Phys. 1, 195 (1993).
  22. S. Hayakawa, Polarization of Cosmic-Ray μ𝜇\muitalic_μ Mesons: Theory, Phys. Rev. 108, 1533 (1957).
  23. G. W. Clark and J. Hersil, Polarization of Cosmic-Ray μ𝜇\muitalic_μ Mesons: Experiment, Phys. Rev. 108, 1538 (1957).
  24. J. L. Osborne, Cosmic-ray muon polarization studies of the K/π𝜋\piitalic_π ratio, Nuovo Cim. 32, 816 (1964).
  25. R. Turner, C. Ankenbrandt, and R. Larsen, Polarization of Cosmic-Ray Muon, Phys. Rev. D 4, 17 (1971).
  26. Y. Fukuda et al. (The Super-Kamiokande collaboration), The Super-Kamiokande detector, Nucl. Instrum. Meth. A 501, 418 (2003).
  27. K. Abe et al. (The Super-Kamiokande collaboration), Calibration of the Super-Kamiokande Detector, Nucl. Instrum. Meth. A 737, 253 (2014), arXiv:1307.0162 [physics.ins-det] .
  28. J. F. Beacom and M. R. Vagins, GADZOOKS! Anti-neutrino spectroscopy with large water Cherenkov detectors, Phys. Rev. Lett. 93, 171101 (2004), arXiv:hep-ph/0309300 .
  29. K. Abe et al. (The Super-Kamiokande collaboration), First gadolinium loading to Super-Kamiokande, Nucl. Instrum. Meth. A 1027, 166248 (2022), arXiv:2109.00360 [physics.ins-det] .
  30. S. Yamada et al. (The Super-Kamiokande collaboration), Commissioning of the new electronics and online system for the Super-Kamiokande experiment, IEEE Trans. Nucl. Sci. 57, 428 (2010).
  31. Z. Conner, A study of solar neutrinos using the Super-Kamiokande detector, Ph.D. thesis, University of Maryland (1997).
  32. S. Desai, High energy neutrino astrophysics with Super-Kamiokande, Ph.D. thesis, Boston university (2004).
  33. M. Smy, Low Energy Event Reconstruction and Selection in Super-Kamiokande-III, in 30th International Cosmic Ray Conference (2007).
  34. J. Hosaka et al. (The Super-Kamiokande collaboration), Solar neutrino measurements in super-Kamiokande-I, Phys. Rev. D 73, 112001 (2006), arXiv:hep-ex/0508053 .
  35. J. P. Cravens et al. (The Super-Kamiokande collaboration), Solar neutrino measurements in Super-Kamiokande-II, Phys. Rev. D 78, 032002 (2008), arXiv:0803.4312 [hep-ex] .
  36. K. Abe et al. (The Super-Kamiokande collaboration), Solar neutrino results in Super-Kamiokande-III, Phys. Rev. D 83, 052010 (2011), arXiv:1010.0118 [hep-ex] .
  37. K. Abe et al. (The Super-Kamiokande collaboration), Solar Neutrino Measurements in Super-Kamiokande-IV, Phys. Rev. D 94, 052010 (2016), arXiv:1606.07538 [hep-ex] .
  38. D. Mei and A. Hime, Muon-induced background study for underground laboratories, Phys. Rev. D 73, 053004 (2006), arXiv:astro-ph/0512125 .
  39. G. Guillian et al. (The Super-Kamiokande collaboration), Observation of the anisotropy of 10-TeV primary cosmic ray nuclei flux with the super-kamiokande-I detector, Phys. Rev. D 75, 062003 (2007), arXiv:astro-ph/0508468 .
  40. V. A. Kudryavtsev, E. V. Korolkova, and N. J. C. Spooner, Narrow muon bundles from muon pair production in rock, Phys. Lett. B 471, 251 (1999), arXiv:hep-ph/9911493 .
  41. V. A. Kudryavtsev, Muon simulation codes MUSIC and MUSUN for underground physics, Comput. Phys. Commun. 180, 339 (2009), arXiv:0810.4635 [physics.comp-ph] .
  42. L. Michel, Interaction between four half spin particles and the decay of the μ𝜇\muitalic_μ meson, Proc. Phys. Soc. A 63, 514 (1950).
  43. C. Bouchiat and L. Michel, Theory of μ𝜇\muitalic_μ-Meson Decay with the Hypothesis of Nonconservation of Parity, Phys. Rev. 106, 170 (1957).
  44. T. Kinoshita and A. Sirlin, Muon Decay with Parity Nonconserving Interactions and Radiative Corrections in the Two-Component Theory, Phys. Rev. 107, 593 (1957a).
  45. T. Kinoshita and A. Sirlin, Polarization of Electrons in Muon Decay with General Parity-Nonconserving Interactions, Phys. Rev. 108, 844 (1957b).
  46. E. Fermi and E. Teller, The capture of negative mesotrons in matter, Phys. Rev. 72, 399 (1947).
  47. F. Frank, Hypothetical Alternative Energy Sources for the “Second Meson” Events, Nature 160, 525– (1947).
  48. V. Gilinsky and J. Mathews, Decay of Bound Muons, Phys. Rev. 120, 1450 (1960).
  49. A. Czarnecki, X. Garcia i Tormo, and W. J. Marciano, Muon decay in orbit: spectrum of high-energy electrons, Phys. Rev. D 84, 013006 (2011), arXiv:1106.4756 [hep-ph] .
  50. P. Percival et al., The detection of muonium in water, Chem. Phys. Lett. 39, 333 (1976).
  51. M. Demeur, On the anomalous L-X-ray yield in light mesic atoms, Nucl. Phys. 1, 516 (1956).
  52. V. R. Akylas and P. Vogel, Cascade depolarization of the negative muons, Hyperfine Interact. 3, 77 (1977).
  53. R. A. Ferrell, Auger Effect in Mesonic Atoms, Phys. Rev. Lett. 4, 425 (1960).
  54. R. A. Swanson, Depolarization of Positive Muons in Condensed Matter, Phys. Rev. 112, 580 (1958).
  55. D. Walker, Y. Jean, and D. Fleming, Muonium atoms and intraspur processes in water, J. Chem. Phys. 70, 4534 (1978).
  56. P. Percival, E. Roduner, and H. Fischer, Radiolysis effects in muonium chemistry, Chem. Phys. 32, 353 (1978).
  57. J. I. Friedman and V. L. Telegdi, Nuclear Emulsion Evidence for Parity Nonconservation in the Decay Chain π+→μ+→e+→superscript𝜋superscript𝜇→superscript𝑒\pi^{+}\to\mu^{+}\to e^{+}italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT → italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT → italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT, Phys. Rev. 106, 1290 (1957).
  58. G. Burbidge and H. Bordem, The Mesonic Auger Effect, Phys. Rev. 89, 189 (1953).
  59. Y. Eisenberg and D. Kessler, On the μ𝜇\muitalic_μ-Mesonic Atoms, Nuovo Cim 19, 1195 (1961).
  60. R. A. Mann and M. E. Rose, Depolarization of Negative mu Mesons, Phys. Rev. 121, 293 (1961).
  61. Überall, H., Hyperfine Splitting Effects in the Capture of Polarized μ−superscript𝜇\mu^{-}italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT Mesons, Phys. Rev. 114, 1640 (1959).
  62. V. A. Dzhrbashyan, DEPOLARIZATION OF THE NEGATIVE MUON IN MESIC-ATOM TRANSITIONS, Sov. Phys. JTEP 9, 188 (1959).
  63. I. M. Shmushkevich, DEPOLARIZATION OF μ−superscript𝜇\mu^{-}italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT MESONS IN FORMATION OF μ𝜇\muitalic_μ-MESIC ATOMS, Sov. Phys. JTEP 9, 449 (1959).
  64. A. Ignatenko, Processes of depolarization of negative muons, Nucl. Phys. 23, 75 (1961).
  65. T. Suzuki, D. F. Measday, and J. P. Roalsvig, Total Nuclear Capture Rates for Negative Muons, Phys. Rev. C 35, 2212 (1987).
  66. Y. Fukuda et al. (The Super-Kamiokande collaboration), Measurement of the flux and zenith angle distribution of upward through going muons by Super-Kamiokande, Phys. Rev. Lett. 82, 2644 (1999), arXiv:hep-ex/9812014 .
  67. Y. Zhang et al. (The Super-Kamiokande collaboration), First measurement of radioactive isotope production through cosmic-ray muon spallation in Super-Kamiokande IV, Phys. Rev. D 93, 012004 (2016), arXiv:1509.08168 [hep-ex] .
  68. M. Shinoki et al. (The Super-Kamiokande collaboration), Measurement of the cosmogenic neutron yield in Super-Kamiokande with gadolinium loaded water, Phys. Rev. D 107, 092009 (2023), arXiv:2212.10801 [hep-ex] .
  69. M. E. Plett and S. E. Sobottka, Effects of the giant resonance on the energy spectra of neutrons emitted following muon capture in c-12 and o-16, Phys. Rev. C 3, 1003 (1971).
  70. D. F. Measday, The nuclear physics of muon capture, Phys. Rept. 354, 243 (2001).
  71. M. Nakahata et al. (The Super-Kamiokande collaboration), Calibration of Super-Kamiokande using an electron linac, Nucl. Instrum. Meth. A 421, 113 (1999), arXiv:hep-ex/9807027 .
  72. E. Blaufuss et al. (The Super-Kamiokande collaboration), N-16 as a calibration source for Super-Kamiokande, Nucl. Instrum. Meth. A 458, 638 (2001), arXiv:hep-ex/0005014 .
  73. K. Abe et al. (The Super-Kamiokande collaboration), Solar neutrino measurements using the full data period of Super-Kamiokande-IV (2023), arXiv:2312.12907 [hep-ex] .
  74. H. Daniel, COULOMB CAPTURE OF MUONS AND ATOMIC RADIUS, Z. Phys. A 291, 29 (1979).
  75. T. Von Egidy and F. J. Hartmann, AVERAGE MUONIC COULOMB CAPTURE PROBABILITIES FOR 65 ELEMENTS, Phys. Rev. A 26, 2355 (1982).
  76. R. L. Workman et al. (Particle Data Group), Review of Particle Physics, PTEP 2022, 083C01 (2022).
  77. M. Zechmeister and M. K’́urster, The generalised Lomb-Scargle periodogram A new formalism for the floating-mean and Keplerian periodograms, A&A 496, 577 (2009), arXiv:0901/2573 [astro-ph.IM] .
  78. S. Matsuno et al., COSMIC RAY MUON SPECTRUM UP TO 20-TEV AT 89-degrees ZENITH ANGLE, Phys. Rev. D 29, 1 (1984).
  79. M. Yamada et al. (The Kamiokande collaboration), Measurements of the charge ratio and polarization of 1.2-TeV/c cosmic ray muons with the KAMIOKANDE-II detector, Phys. Rev. D 44, 617 (1991).
  80. S. Haino et al., Measurements of primary and atmospheric cosmic - ray spectra with the BESS-TeV spectrometer, Phys. Lett. B 594, 35 (2004), arXiv:astro-ph/0403704 .
  81. P. Achard et al. (The L3 collaboration), Measurement of the atmospheric muon spectrum from 20-GeV to 3000-GeV, Phys. Lett. B 598, 15 (2004), arXiv:hep-ex/0408114 .
  82. P. Adamson et al. (The MINOS collaboration), Measurement of the atmospheric muon charge ratio at TeV energies with MINOS, Phys. Rev. D 76, 052003 (2007), arXiv:0705.3815 [hep-ex] .
  83. V. Khachatryan et al. (The CMS collaboration), Measurement of the Charge Ratio of Atmospheric Muons with the CMS Detector, Phys. Lett. B 692, 83 (2010), arXiv:1005.5332 [hep-ex] .
  84. N. Agafonova et al. (The OPERA collaboration), Measurement of the TeV atmospheric muon charge ratio with the complete OPERA data set, Eur. Phys. J. C 74, 2933 (2014), arXiv:1403.0244 [hep-ex] .
  85. C. Johnshon, Polarization of Cosmic-Ray Muons at Sea Level, Phys. Rev. 122, 1883 (1961).
  86. A. Alikhanyan, T. Astiani, and E. Matevosyan, INVESTIGATION OF THE POLARIZATION OF COSMIC-RAY μ𝜇\muitalic_μ MESONS, Sov. Phys. JTEP 15, 90 (1962).
  87. B. Dolgoshein, B. Luchkov, and V. Ushakov, Polarization of Low-Energy Cosmic Ray Muons at Sea Level, Sov. Phys. JTEP 15, 654 (1962).
  88. S. Sen Gupta and M. Sinhat, Decay Asymmetry of Cosmic Ray Muons, Proc. Phys. Soc. 79, 1183 (1962).
  89. S. Mine, Systematic measurement of the spin polarization of the cosmic ray muons, Ph.D. thesis, The university of Tokyo (1996).
  90. N. Globus and R. D. Blandford, The Chiral Puzzle of Life, Astrophys. J. Lett. 895, L11 (2020), arXiv:2002.12138 [q-bio.OT] .
  91. N. Globus, A. Fedynitch, and R. D. Blandford, Polarized radiation and the Emergence of Biological Homochirality on Earth and Beyond, Astrophys. J. 910, 85 (2021), arXiv:2101.00530 [astro-ph.EP] .
  92. N. Brene, L. Egardt, and B. Qvist, On the kμ𝜇\muitalic_μ3 and ke3 decay modes, Nucl. Phys. 22, 553 (1961).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.