Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Sharp detection of the onset of Floquet heating using eigenstate sensitivity (2403.08490v2)

Published 13 Mar 2024 in cond-mat.stat-mech and quant-ph

Abstract: Chaotic Floquet systems at sufficiently low driving frequencies are known to heat up to an infinite temperature ensemble in the thermodynamic limit. However at high driving frequencies, Floquet systems remain energetically stable in a robust prethermal phase with exponentially long heating times. We propose sensitivity (susceptibility) of Floquet eigenstates against infinitesimal deformations of the drive, as a sharp and sensitive measure to detect this heating transition. It also captures various regimes (timescales) of Floquet thermalization accurately. Particularly, we find that at low frequencies near the onset of unbounded heating, Floquet eigenstates are maximally sensitive to perturbations and consequently the scaled susceptibility develops a sharp maximum. We further connect our results to the relaxation dynamics of local observables to show that near the onset of Floquet heating, the system is nonergodic with slow glassy dynamics despite being nonintegrable at all driving frequencies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. N. Goldman and J. Dalibard, Periodically driven quantum systems: Effective hamiltonians and engineered gauge fields, Phys. Rev. X 4, 031027 (2014).
  2. M. Bukov, L. D’Alessio, and A. Polkovnikov, Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to floquet engineering, Advances in Physics 64, 139 (2015), https://doi.org/10.1080/00018732.2015.1055918 .
  3. A. Eckardt, Colloquium: Atomic quantum gases in periodically driven optical lattices, Rev. Mod. Phys. 89, 011004 (2017).
  4. T. Oka and S. Kitamura, Floquet engineering of quantum materials, Annual Review of Condensed Matter Physics 10, 387 (2019), https://doi.org/10.1146/annurev-conmatphys-031218-013423 .
  5. A. Lazarides, A. Das, and R. Moessner, Equilibrium states of generic quantum systems subject to periodic driving, Phys. Rev. E 90, 012110 (2014).
  6. L. D’Alessio and M. Rigol, Long-time behavior of isolated periodically driven interacting lattice systems, Phys. Rev. X 4, 041048 (2014).
  7. T. N. Ikeda and A. Polkovnikov, Fermi’s golden rule for heating in strongly driven floquet systems, Phys. Rev. B 104, 134308 (2021).
  8. W. Hodson and C. Jarzynski, Energy diffusion and prethermalization in chaotic billiards under rapid periodic driving, Phys. Rev. E 104, 064210 (2021).
  9. S. A. Weidinger and M. Knap, Floquet prethermalization and regimes of heating in a periodically driven, interacting quantum system, Scientific Reports 7, 45382 (2017).
  10. A. Sen, D. Sen, and K. Sengupta, Analytic approaches to periodically driven closed quantum systems: methods and applications, Journal of Physics: Condensed Matter 33, 443003 (2021).
  11. C. Fleckenstein and M. Bukov, Prethermalization and thermalization in periodically driven many-body systems away from the high-frequency limit, Phys. Rev. B 103, L140302 (2021).
  12. M. Heyl, P. Hauke, and P. Zoller, Quantum localization bounds trotter errors in digital quantum simulation, Science Advances 5, eaau8342 (2019), https://www.science.org/doi/pdf/10.1126/sciadv.aau8342 .
  13. D. S. Bhakuni, L. F. Santos, and Y. B. Lev, Suppression of heating by long-range interactions in periodically driven spin chains, Phys. Rev. B 104, L140301 (2021).
  14. T. N. Ikeda, S. Sugiura, and A. Polkovnikov, Robust effective ground state in a nonintegrable floquet quantum circuit (2023), arXiv:2311.16217 [quant-ph] .
  15. B. Mukherjee, A. Sen, and K. Sengupta, Periodically driven rydberg chains with staggered detuning, Phys. Rev. B 106, 064305 (2022).
  16. L. Campos Venuti and P. Zanardi, Quantum critical scaling of the geometric tensors, Physical Review Letters 99, 10.1103/physrevlett.99.095701 (2007).
  17. For such classical systems this susceptibility can be viewed as a complexity measure of trajectory-preserving canonical transformations [46].
  18. H. Kim and A. Polkovnikov, Integrability is attractive (2023), arXiv:2308.09745 [cond-mat.stat-mech] .
  19. M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
  20. J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991).
  21. M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
  22. N. Regnault and R. Nandkishore, Floquet thermalization: Symmetries and random matrix ensembles, Phys. Rev. B 93, 104203 (2016).
  23. A. Haldar, R. Moessner, and A. Das, Onset of floquet thermalization, Phys. Rev. B 97, 245122 (2018).
  24. D. Roy and T. Prosen, Random matrix spectral form factor in kicked interacting fermionic chains, Phys. Rev. E 102, 060202 (2020).
  25. D. Sels and A. Polkovnikov, Dynamical obstruction to localization in a disordered spin chain, Phys. Rev. E 104, 054105 (2021).
  26. D. A. Abanin, W. De Roeck, and F. Huveneers, Exponentially slow heating in periodically driven many-body systems, Physical Review Letters 115, 10.1103/physrevlett.115.256803 (2015).
  27. T. Mori, T. Kuwahara, and K. Saito, Rigorous bound on energy absorption and generic relaxation in periodically driven quantum systems, Physical Review Letters 116, 10.1103/physrevlett.116.120401 (2016).
  28. L. D’Alessio and A. Polkovnikov, Many-body energy localization transition in periodically driven systems, Annals of Physics 333, 19–33 (2013).
  29. S. J. Garratt, S. Roy, and J. T. Chalker, Local resonances and parametric level dynamics in the many-body localized phase, Physical Review B 104, 10.1103/physrevb.104.184203 (2021).
  30. A. Rajak, R. Citro, and E. G. D. Torre, Stability and pre-thermalization in chains of classical kicked rotors, Journal of Physics A: Mathematical and Theoretical 51, 465001 (2018).
  31. P. Weinberg and M. Bukov, QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems part I: spin chains, SciPost Phys. 2, 003 (2017).
  32. P. Weinberg and M. Bukov, QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems. Part II: bosons, fermions and higher spins, SciPost Phys. 7, 020 (2019).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube