Stabilizer ground states for simulating quantum many-body physics: theory, algorithms, and applications (2403.08441v4)
Abstract: Stabilizer states, which are also known as the Clifford states, have been commonly utilized in quantum information, quantum error correction, and quantum circuit simulation due to their simple mathematical structure. In this work, we apply stabilizer states to tackle quantum many-body ground state problems and introduce the concept of stabilizer ground states. We establish an equivalence formalism for identifying stabilizer ground states of general Pauli Hamiltonians. Moreover, we develop an exact and linear-scaled algorithm to obtain stabilizer ground states of 1D local Hamiltonians and thus free from discrete optimization. This proposed equivalence formalism and linear-scaled algorithm are not only applicable to finite-size systems, but also adaptable to infinite periodic systems. The scalability and efficiency of the algorithms are numerically benchmarked on different Hamiltonians. Finally, we demonstrate that stabilizer ground states are promising tools for not only qualitative understanding of quantum systems, but also cornerstones of more advanced classical or quantum algorithms.
- A. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and Quantum Computation, 47 (American Mathematical Soc., Providence, 2002).
- D. Aharonov and T. Naveh, Quantum NP - A Survey, arXiv:quant-ph/0210077 (2002), arXiv:quant-ph/0210077 .
- J. Kempe, A. Kitaev, and O. Regev, The complexity of the local Hamiltonian problem, SIAM J. Comput. 35, 1070 (2006).
- N. Schuch and F. Verstraete, Computational complexity of interacting electrons and fundamental limitations of density functional theory, Nat. Phys. 5, 732 (2009).
- Y. Huang, Two-dimensional local Hamiltonian problem with area laws is QMA-complete, J. Comput. Phys. 443, 110534 (2021).
- U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Ann. Phys. 326, 96 (2011).
- G. Carleo and M. Troyer, Solving the quantum many-body problem with artificial neural networks, Science 355, 602 (2017).
- D.-L. Deng, X. Li, and S. Das Sarma, Quantum entanglement in neural network states, Phys. Rev. X 7, 021021 (2017).
- S.-X. Zhang, Z.-Q. Wan, and H. Yao, Automatic differentiable Monte Carlo: Theory and application, Phys. Rev. Res. 5, 033041 (2023a).
- R. Shankar, Principles of quantum mechanics (Springer Science & Business Media, 2012).
- C. Møller and M. S. Plesset, Note on an approximation treatment for many-electron systems, Phys. Rev. 46, 618 (1934).
- I. Shavitt and R. J. Bartlett, Many-body methods in chemistry and physics: MBPT and coupled-cluster theory (Cambridge university press, 2009).
- R. J. Bartlett and M. Musiał, Coupled-cluster theory in quantum chemistry, Rev. Mod. Phys. 79, 291 (2007).
- A. Szabo and N. S. Ostlund, Modern quantum chemistry: Introduction to advanced electronic structure theory (Courier Corporation, 2012).
- M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Phys. Today 54, 60 (2001).
- D. Gottesman, Theory of fault-tolerant quantum computation, Phys. Rev. A 57, 127 (1998a).
- D. Gottesman, The Heisenberg representation of quantum computers, arXiv preprint quant-ph/9807006 (1998b).
- S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Phys. Rev. A 70, 052328 (2004).
- P. Jordan and E. P. Wigner, Über das paulische äquivalenzverbot (Springer, 1993).
- S. B. Bravyi and A. Y. Kitaev, Fermionic quantum computation, Ann. Phys. 298, 210 (2002).
- A. Miessen, P. J. Ollitrault, and I. Tavernelli, Quantum algorithms for quantum dynamics: A performance study on the spin-boson model, Phys. Rev. Res. 3, 043212 (2021).
- Z. Webb, The Clifford group forms a unitary 3-design, Quantum Info. Comput. 16, 1379–1400 (2016).
- H. Y. Huang, R. Kueng, and J. Preskill, Predicting many properties of a quantum system from very few measurements, Nat. Phys. 16, 1050 (2020).
- A. Nahum, S. Vijay, and J. Haah, Operator spreading in random unitary circuits, Phys. Rev. X 8, 021014 (2018).
- D. Gottesman, Stabilizer codes and quantum error correction, arXiv preprint quant-ph/9705052 (1997).
- S. Bravyi and D. Gosset, Improved classical simulation of quantum circuits dominated by Clifford gates, Phys. Rev. Lett. 116, 250501 (2016).
- T. Begušić, K. Hejazi, and G. K. Chan, Simulating quantum circuit expectation values by clifford perturbation theory, arXiv preprint arXiv:2306.04797 (2023).
- J. Sun, L. Cheng, and W. Li, Toward chemical accuracy with shallow quantum circuits: A Clifford-based Hamiltonian engineering approach, J. Chem. Theory Comput. 20, 695 (2024).
- D. Gross, Hudson’s theorem for finite-dimensional quantum systems, J. Math. Phys. 47 (2006).
- A. Salomaa, Theory of automata (Elsevier, 2014).
- F. Bloch, Über die quantenmechanik der elektronen in kristallgittern, Zeitschrift für physik 52, 555 (1929).
- P. Kratzer and J. Neugebauer, The basics of electronic structure theory for periodic systems, Front. Chem. 7, 106 (2019).
- R. M. Martin, Electronic structure: basic theory and practical methods (Cambridge university press, 2020).
- A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003).
- R. Koenig and J. A. Smolin, How to efficiently select an arbitrary Clifford group element, J. Math. Phys. 55 (2014).
- B. Bhattacharyya and G. S. Ravi, Optimal Clifford initial states for Ising Hamiltonians, in 2023 IEEE International Conference on Rebooting Computing (ICRC) (IEEE, 2023) pp. 1–10.
- H.-K. Zhang, S. Liu, and S.-X. Zhang, Absence of barren plateaus in finite local-depth circuits with long-range entanglement, arXiv:2311.01393 (2023c).
- R. Verresen, R. Moessner, and F. Pollmann, One-dimensional symmetry protected topological phases and their transitions, Phys. Rev. B 96, 165124 (2017).
- F. Wu, Y. Deng, and N. Prokof’ev, Phase diagram of the toric code model in a parallel magnetic field, Phys. Rev. B 85, 195104 (2012).
- F. Barahona, On the computational complexity of Ising spin glass models, J. Phys. A Math. Gen. 15, 3241 (1982).
- S.-X. Zhang, Classification on the computational complexity of spin models, arXiv preprint arXiv:1911.04122 (2019).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.