Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Estimation by Two Agents with Different Feature Spaces (2403.07749v2)

Published 12 Mar 2024 in eess.SY and cs.SY

Abstract: We consider the problem of estimation of a function by a system consisting of two agents and a fusion center. The two agents collect data comprising of samples of an independent variable and the corresponding value of a dependent variable. The objective of the system is to collaboratively estimate the function without any exchange of data among the members of the system. To this end, we propose the following framework. The agents are given a set of features using which they construct suitable function spaces to formulate and solve the estimation problems locally. The estimated functions are uploaded to a fusion space where an optimization problem is solved to fuse the estimates (also known as meta-learning) to obtain the system estimate of the mapping. The fused function is then downloaded by the agents to gather knowledge about the other agents estimate of the function. With respect to the framework, we present the following: a systematic construction of fusion space given the features of the agents; the derivation of an uploading operator for the agents to upload their estimated functions to a fusion space; the derivation of a downloading operator for the fused function to be downloaded. Through an example on least squares regression, we illustrate the distributed estimation architecture that has been developed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. D. Lahat, T. Adali, and C. Jutten, “Multimodal data fusion: an overview of methods, challenges, and prospects,” Proceedings of the IEEE, vol. 103, no. 9, pp. 1449–1477, 2015.
  2. D. Ramachandram and G. W. Taylor, “Deep multimodal learning: A survey on recent advances and trends,” IEEE signal processing magazine, vol. 34, no. 6, pp. 96–108, 2017.
  3. F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy, “Berkeley mhad: A comprehensive multimodal human action database,” in 2013 IEEE workshop on applications of computer vision (WACV).   IEEE, 2013, pp. 53–60.
  4. C. Chen, R. Jafari, and N. Kehtarnavaz, “Utd-mhad: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor,” in 2015 IEEE International conference on image processing (ICIP).   IEEE, 2015, pp. 168–172.
  5. A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–1237, 2013.
  6. W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000 km: The oxford robotcar dataset,” The International Journal of Robotics Research, vol. 36, no. 1, pp. 3–15, 2017.
  7. O. Banos, C. Villalonga, R. Garcia, A. Saez, M. Damas, J. A. Holgado-Terriza, S. Lee, H. Pomares, and I. Rojas, “Design, implementation and validation of a novel open framework for agile development of mobile health applications,” Biomedical engineering online, vol. 14, no. 2, pp. 1–20, 2015.
  8. G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao, and L. Ljung, “Kernel methods in system identification, machine learning and function estimation: A survey,” Automatica, vol. 50, no. 3, pp. 657–682, 2014.
  9. T. Chen, M. S. Andersen, L. Ljung, A. Chiuso, and G. Pillonetto, “System identification via sparse multiple kernel-based regularization using sequential convex optimization techniques,” IEEE Transactions on Automatic Control, vol. 59, no. 11, pp. 2933–2945, 2014.
  10. M. Espinoza, J. A. Suykens, and B. De Moor, “Kernel based partially linear models and nonlinear identification,” IEEE Transactions on Automatic Control, vol. 50, no. 10, pp. 1602–1606, 2005.
  11. M. Gönen and E. Alpaydın, “Multiple kernel learning algorithms,” The Journal of Machine Learning Research, vol. 12, pp. 2211–2268, 2011.
  12. S. S. Bucak, R. Jin, and A. K. Jain, “Multiple kernel learning for visual object recognition: A review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 7, pp. 1354–1369, 2013.
  13. M. Donini, J. M. Monteiro, M. Pontil, J. Shawe-Taylor, and J. Mourao-Miranda, “A multimodal multiple kernel learning approach to alzheimer’s disease detection,” in 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP).   IEEE, 2016, pp. 1–6.
  14. Y. Cho and L. Saul, “Kernel methods for deep learning,” Advances in neural information processing systems, vol. 22, 2009.
  15. M. Belkin, S. Ma, and S. Mandal, “To understand deep learning we need to understand kernel learning,” in International Conference on Machine Learning.   PMLR, 2018, pp. 541–549.
  16. P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al., “Advances and open problems in federated learning,” Foundations and Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.
  17. Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, “A survey on federated learning systems: Vision, hype and reality for data privacy and protection,” IEEE Transactions on Knowledge and Data Engineering, 2021.
  18. A. Raghavan and K. H. Johansson, “Distributed regression by two agents from noisy data,” in 2023 European Control Conference (ECC).   IEEE, 2023, pp. 1–6.
  19. J. S. Baras and A. Raghavan, “Order effects of measurements in multi-agent hypothesis testing,” Communications in Information and Systems, vol. 21, no. 2, pp. 173–208, 2021.
  20. T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine learning,” The Annals of Statistics, vol. 36, no. 3, pp. 1171–1220, 2008.
Citations (2)

Summary

We haven't generated a summary for this paper yet.