Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian data fusion with shared priors (2212.07311v2)

Published 14 Dec 2022 in cs.LG and stat.ML

Abstract: The integration of data and knowledge from several sources is known as data fusion. When data is only available in a distributed fashion or when different sensors are used to infer a quantity of interest, data fusion becomes essential. In Bayesian settings, a priori information of the unknown quantities is available and, possibly, present among the different distributed estimators. When the local estimates are fused, the prior knowledge used to construct several local posteriors might be overused unless the fusion node accounts for this and corrects it. In this paper, we analyze the effects of shared priors in Bayesian data fusion contexts. Depending on different common fusion rules, our analysis helps to understand the performance behavior as a function of the number of collaborative agents and as a consequence of different types of priors. The analysis is performed by using two divergences which are common in Bayesian inference, and the generality of the results allows to analyze very generic distributions. These theoretical results are corroborated through experiments in a variety of estimation and classification problems, including linear and nonlinear models, and federated learning schemes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Peng Wu (119 papers)
  2. Tales Imbiriba (53 papers)
  3. Victor Elvira (41 papers)
  4. Pau Closas (30 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.