Reconstructions of Jupiter's magnetic field using physics informed neural networks (2403.07507v2)
Abstract: Magnetic sounding using data collected from the Juno mission can be used to provide constraints on Jupiter's interior. However, inwards continuation of reconstructions assuming zero electrical conductivity and a representation in spherical harmonics are limited by the enhancement of noise at small scales. Here we describe new reconstructions of Jupiter's internal magnetic field based on physics-informed neural networks and either the first 33 (PINN33) or the first 50 (PINN50) of Juno's orbits. The method can resolve local structures, and allows for weak ambient electrical currents. Our models are not hampered by noise amplification at depth, and offer a much clearer picture of the interior structure. We estimate that the dynamo boundary is at a fractional radius of 0.8. At this depth, the magnetic field is arranged into longitudinal bands, and strong local features such as the great blue spot appear to be rooted in neighbouring structures of oppositely signed flux.
- \APACrefYearMonthDay2016. \BBOQ\APACrefatitleTensorFlow: a system for large-scale machine learning Tensorflow: a system for large-scale machine learning.\BBCQ \BIn \APACrefbtitleProceedings of the 12th USENIX conference on Operating Systems Design and Implementation Proceedings of the 12th usenix conference on operating systems design and implementation (\BPG 265–283). \APACaddressPublisherSavannah, GA, USAUSENIX Association. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleInternational geomagnetic reference field: the thirteenth generation International geomagnetic reference field: the thirteenth generation.\BBCQ \APACjournalVolNumPagesEarth, Planets and Space7311–25. \PrintBackRefs\CurrentBib
- \APACrefYear1996. \APACrefbtitleFoundations of geomagnetism Foundations of geomagnetism. \APACaddressPublisherCambridge University Press. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleAutomatic Differentiation in Machine Learning: a Survey Automatic differentiation in machine learning: a survey.\BBCQ \APACjournalVolNumPagesJournal of Machine Learning Research18153. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleDifferential rotation in Jupiter’s interior revealed by simultaneous inversion for the magnetic field and zonal flux velocity Differential rotation in jupiter’s interior revealed by simultaneous inversion for the magnetic field and zonal flux velocity.\BBCQ \APACjournalVolNumPagesJournal of Geophysical Research: Planets1275e2021JE007138. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2010. \BBOQ\APACrefatitleThe juno mission The juno mission.\BBCQ \APACjournalVolNumPagesProceedings of the International Astronomical Union6S26992–100. \PrintBackRefs\CurrentBib
- \APACinsertmetastarconnerney1981magnetic{APACrefauthors}Connerney, J\BPBIE\BPBIP. \APACrefYearMonthDay1981. \BBOQ\APACrefatitleThe magnetic field of Jupiter: A generalized inverse approach The magnetic field of jupiter: A generalized inverse approach.\BBCQ \APACjournalVolNumPagesJournal of Geophysical Research: Space Physics86A97679–7693. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1981. \BBOQ\APACrefatitleModeling the Jovian current sheet and inner magnetosphere Modeling the jovian current sheet and inner magnetosphere.\BBCQ \APACjournalVolNumPagesJournal of Geophysical Research: Space Physics86A108370–8384. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2017. \BBOQ\APACrefatitleThe Juno Magnetic Field Investigation The juno magnetic field investigation.\BBCQ \APACjournalVolNumPagesSpace Science Reviews2131-439–138. {APACrefDOI} 10.1007/s11214-017-0334-z \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleA New Model of Jupiter’s Magnetic Field From Juno’s First Nine Orbits A new model of jupiter’s magnetic field from juno’s first nine orbits.\BBCQ \APACjournalVolNumPagesGeophysical Research Letters4562590–2596. {APACrefDOI} 10.1002/2018GL077312 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA New Model of Jupiter’s Magnetic Field at the Completion of Juno’s Prime Mission A new model of jupiter’s magnetic field at the completion of juno’s prime mission.\BBCQ \APACjournalVolNumPagesJournal of Geophysical Research-planets1272e2021JE007055. {APACrefDOI} 10.1029/2021JE007055 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitlePhysics-informed machine learning Physics-informed machine learning.\BBCQ \APACjournalVolNumPagesNature Reviews Physics36422–440. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleJupiter’s atmospheric jet streams extend thousands of kilometres deep Jupiter’s atmospheric jet streams extend thousands of kilometres deep.\BBCQ \APACjournalVolNumPagesNature5557695223–226. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2015. \APACrefbtitleAdam: A Method for Stochastic Optimization. Adam: A method for stochastic optimization. {APACrefURL} http://arxiv.org/abs/1412.6980 \PrintBackRefs\CurrentBib
- \APACinsertmetastarlowes1974spatial{APACrefauthors}Lowes, F. \APACrefYearMonthDay1974. \BBOQ\APACrefatitleSpatial power spectrum of the main geomagnetic field, and extrapolation to the core Spatial power spectrum of the main geomagnetic field, and extrapolation to the core.\BBCQ \APACjournalVolNumPagesGeophysical Journal International363717–730. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleDeepXDE: A Deep Learning Library for Solving Differential Equations Deepxde: A deep learning library for solving differential equations.\BBCQ \APACjournalVolNumPagesSiam Review631208–228. {APACrefDOI} 10.1137/19M1274067 \PrintBackRefs\CurrentBib
- \APACinsertmetastarmauersberger1956mittel{APACrefauthors}Mauersberger, P. \APACrefYearMonthDay1956. \BBOQ\APACrefatitleDas mittel der energiedichte des geomagnetischen hauptfeldes an der erdoberflache und seine saulare anderung Das mittel der energiedichte des geomagnetischen hauptfeldes an der erdoberflache und seine saulare anderung.\BBCQ \APACjournalVolNumPagesGerlands Beitr. Geophys.65207–215. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTime variation of Jupiter’s internal magnetic field consistent with zonal wind advection Time variation of jupiter’s internal magnetic field consistent with zonal wind advection.\BBCQ \APACjournalVolNumPagesNature Astronomy38730–735. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleA complex dynamo inferred from the hemispheric dichotomy of Jupiter’s magnetic field A complex dynamo inferred from the hemispheric dichotomy of jupiter’s magnetic field.\BBCQ \APACjournalVolNumPagesNature561772176–78. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleEfficient training of physics-informed neural networks via importance sampling Efficient training of physics-informed neural networks via importance sampling.\BBCQ \APACjournalVolNumPagesComputer-Aided Civil and Infrastructure Engineering368962–977. {APACrefURL} https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12685 {APACrefDOI} https://doi.org/10.1111/mice.12685 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitlePhysics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations.\BBCQ \APACjournalVolNumPagesJournal of Computational Physics378686–707. {APACrefDOI} 10.1016/j.jcp.2018.10.045 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2016. \BBOQ\APACrefatitleModeling the Jovian magnetic field and its secular variation using all available magnetic field observations Modeling the jovian magnetic field and its secular variation using all available magnetic field observations.\BBCQ \APACjournalVolNumPagesJ.Geophys. Res.: Planets1213309–337. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleThe Internal Structure and Dynamics of Jupiter Unveiled by a High-Resolution Magnetic Field and Secular Variation Model The internal structure and dynamics of jupiter unveiled by a high-resolution magnetic field and secular variation model.\BBCQ \APACjournalVolNumPagesGeophys. Res. Lett.4915e2022GL098839. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleUnderstanding and Mitigating Gradient Flow Pathologies in Physics-informed Neural Networks Understanding and mitigating gradient flow pathologies in physics-informed neural networks.\BBCQ \APACjournalVolNumPagesSiam Journal on Scientific Computing435A3055–A3081. {APACrefDOI} 10.1137/20M1318043 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023. \BBOQ\APACrefatitleA comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks.\BBCQ \APACjournalVolNumPagesComputer Methods in Applied Mechanics and Engineering403115671. {APACrefDOI} 10.1016/j.cma.2022.115671 \PrintBackRefs\CurrentBib