Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning for Improved Current Density Reconstruction from 2D Vector Magnetic Images (2407.14553v2)

Published 18 Jul 2024 in physics.comp-ph, physics.app-ph, and quant-ph

Abstract: The reconstruction of electrical current densities from magnetic field measurements is an important technique with applications in materials science, circuit design, quality control, plasma physics, and biology. Analytic reconstruction methods exist for planar currents, but break down in the presence of high spatial frequency noise or large standoff distance, restricting the types of systems that can be studied. Here, we demonstrate the use of a deep convolutional neural network for current density reconstruction from two-dimensional (2D) images of vector magnetic fields acquired by a quantum diamond microscope (QDM) utilizing a surface layer of Nitrogen Vacancy (NV) centers in diamond. Trained network performance significantly exceeds analytic reconstruction for data with high noise or large standoff distances. This machine learning technique can perform quality inversions on lower SNR data, reducing the data collection time by a factor of about 400 and permitting reconstructions of weaker and three-dimensional current sources.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com