Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Signed graphs in data sciences via communicability geometry (2403.07493v1)

Published 12 Mar 2024 in math.MG, cs.DM, cs.LG, math.CO, and physics.soc-ph

Abstract: Signed graphs are an emergent way of representing data in a variety of contexts were conflicting interactions exist. These include data from biological, ecological, and social systems. Here we propose the concept of communicability geometry for signed graphs, proving that metrics in this space, such as the communicability distance and angles, are Euclidean and spherical. We then apply these metrics to solve several problems in data analysis of signed graphs in a unified way. They include the partitioning of signed graphs, dimensionality reduction, finding hierarchies of alliances in signed networks as well as the quantification of the degree of polarization between the existing factions in systems represented by this type of graphs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (94)
  1. P. Tabaghi, J. Peng, O. Milenkovic, and I. Dokmanić, “Geometry of similarity comparisons,” arXiv preprint arXiv:2006.09858, 2020.
  2. T. Dittrich and G. Matz, “Signal processing on signed graphs: Fundamentals and potentials,” IEEE Signal Processing Magazine, vol. 37, pp. 86–98, Nov. 2020.
  3. T. Zaslavsky, “Signed graphs,” Discrete Applied Mathematics, vol. 4, pp. 47–74, Jan. 1982.
  4. X. Zheng, D. Zeng, and F.-Y. Wang, “Social balance in signed networks,” Information Systems Frontiers, vol. 17, pp. 1077–1095, Oct. 2015.
  5. G. Iacono and C. Altafini, “Monotonicity, frustration, and ordered response: an analysis of the energy landscape of perturbed large-scale biological networks,” BMC systems biology, vol. 4, no. 1, pp. 1–14, 2010.
  6. H. Saiz, J. Gómez-Gardeñes, P. Nuche, A. Girón, Y. Pueyo, and C. L. Alados, “Evidence of structural balance in spatial ecological networks,” Ecography, vol. 40, no. 6, pp. 733–741, 2017.
  7. G. Facchetti, G. Iacono, and C. Altafini, “Computing global structural balance in large-scale signed social networks,” Proceedings of the National Academy of Sciences, vol. 108, no. 52, pp. 20953–20958, 2011.
  8. M. Szell, R. Lambiotte, and S. Thurner, “Multirelational organization of large-scale social networks in an online world,” Proceedings of the National Academy of Sciences, vol. 107, pp. 13636–13641, Aug. 2010.
  9. J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed networks in social media,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (Atlanta Georgia USA), pp. 1361–1370, ACM, Apr. 2010.
  10. Z. P. Neal, “A sign of the times? Weak and strong polarization in the U.S. Congress, 1973–2016,” Social Networks, vol. 60, pp. 103–112, Jan. 2020.
  11. F. Harary, “A structural analysis of the situation in the middle east in 1956,” Journal of Conflict Resolution, vol. 5, no. 2, pp. 167–178, 1961.
  12. E. M. Hafner-Burton, M. Kahler, and A. H. Montgomery, “Network analysis for international relations,” International organization, vol. 63, no. 3, pp. 559–592, 2009.
  13. F. Diaz-Diaz, P. Bartesaghi, and E. Estrada, “Network theory meets history. Local balance in global international relations,” arXiv preprint arXiv:2303.03774, 2023.
  14. J. W. Baron, “Eigenvalue spectra and stability of directed complex networks,” Physical Review E, vol. 106, no. 6, p. 064302, 2022.
  15. M. MacMahon and D. Garlaschelli, “Community detection for correlation matrices,” Physical Review. X, vol. 5, no. 2, 2015.
  16. E. Ferreira, S. Orbe, J. Ascorbebeitia, B. Álvarez Pereira, and E. Estrada, “Loss of structural balance in stock markets,” Scientific Reports, vol. 11, no. 1, p. 12230, 2021.
  17. P. Hage, “Graph theory as a structural model in cultural anthropology,” Annual Review of Anthropology, vol. 8, no. 1, pp. 115–136, 1979.
  18. P. Hage and F. Harary, “Some genuine graph models in anthropology,” Journal of graph theory, vol. 10, no. 3, pp. 353–361, 1986.
  19. D. R. White, V. Batagelj, and A. Mrvar, “Anthropology: Analyzing large kinship and marriage networks with Pgraph and Pajek,” Social Science Computer Review, vol. 17, no. 3, pp. 245–274, 1999.
  20. N. Arinik, R. Figueiredo, and V. Labatut, “Signed graph analysis for the interpretation of voting behavior,” arXiv preprint arXiv:1712.10157, 2017.
  21. N. Arinik, R. Figueiredo, and V. Labatut, “Multiple partitioning of multiplex signed networks: Application to european parliament votes,” Social Networks, vol. 60, pp. 83–102, 2020.
  22. Z. P. Neal, “A sign of the times? weak and strong polarization in the us congress, 1973–2016,” Social Networks, vol. 60, pp. 103–112, 2020.
  23. S. Talaga, M. Stella, T. J. Swanson, and A. S. Teixeira, “Polarization and multiscale structural balance in signed networks,” Communications Physics, vol. 6, pp. 1–15, Dec. 2023.
  24. B. Healy and A. Stein, “The balance of power in international history: theory and reality,” Journal of Conflict Resolution, vol. 17, no. 1, pp. 33–61, 1973.
  25. D. M. Kilgour, K. W. Hipel, and L. Fang, “The graph model for conflicts,” Automatica, vol. 23, no. 1, pp. 41–55, 1987.
  26. Cambridge University Press, 2010.
  27. P. Doreian and A. Mrvar, “Structural balance and signed international relations,” Journal of Social Structure, vol. 16, no. 1, pp. 1–49, 2015.
  28. A. Kirkley, G. T. Cantwell, and M. E. J. Newman, “Balance in signed networks,” Physical Review. E, vol. 99, p. 012320, Jan. 2019.
  29. A. Corradi, C. McMillan, and N. Dietrich, “A hostile reputation: A social network approach to interstate hostility,” Social Networks, vol. 71, pp. 61–69, 2022.
  30. F. Harary, “On the notion of balance of a signed graph.,” Michigan Mathematical Journal, vol. 2, no. 2, pp. 143–146, 1953.
  31. F. Harary, “On local balance and N-balance in signed graphs.,” Michigan Mathematical Journal, vol. 3, no. 1, pp. 37–41, 1955.
  32. D. Cartwright and F. Harary, “Structural balance: a generalization of Heider’s theory.,” Psychological review, vol. 63, no. 5, p. 277, 1956.
  33. S. Aref and Z. P. Neal, “Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance,” Scientific Reports, vol. 11, p. 19939, Oct. 2021.
  34. P. Guerra, W. M. Jr, C. Cardie, and R. Kleinberg, “A Measure of Polarization on Social Media Networks Based on Community Boundaries,” Proceedings of the International AAAI Conference on Web and Social Media, vol. 7, no. 1, pp. 215–224, 2013.
  35. M. Hohmann, K. Devriendt, and M. Coscia, “Quantifying ideological polarization on a network using generalized Euclidean distance,” Science Advances, vol. 9, p. eabq2044, Mar. 2023.
  36. J. Kunegis, “Applications of Structural Balance in Signed Social Networks,” Feb. 2014.
  37. X. Liu, Z. Ji, and T. Hou, “Graph partitions and the controllability of directed signed networks,” Science China Information Sciences, vol. 62, p. 42202, Mar. 2019.
  38. S. Talaga, M. Stella, T. J. Swanson, and A. S. Teixeira, “Polarization and multiscale structural balance in signed networks,” Apr. 2023.
  39. Y. Tian and R. Lambiotte, “Spreading and structural balance on signed networks,” SIAM Journal on Applied Dynamical Systems, vol. 23, no. 1, pp. 50–80, 2024.
  40. F. Heider, “Attitudes and Cognitive Organization,” The Journal of Psychology, vol. 21, pp. 107–112, Jan. 1946.
  41. Y. Hou, J. Li, and Y. Pan, “On the Laplacian eigenvalues of signed graphs,” Linear and Multilinear Algebra, vol. 51, no. 1, pp. 21–30, 2003.
  42. S. Spiro, “The Wiener index of signed graphs,” Applied Mathematics and Computation, vol. 416, p. 126755, Mar. 2022.
  43. S. K. Hameed, T. V. Shijin, P. Soorya, K. A. Germina, and T. Zaslavsky, “Signed distance in signed graphs,” Linear Algebra and its Applications, vol. 608, pp. 236–247, Jan. 2021.
  44. S. Fortunato and D. Hric, “Community detection in networks: A user guide,” Physics reports, vol. 659, pp. 1–44, 2016.
  45. M. A. Javed, M. S. Younis, S. Latif, J. Qadir, and A. Baig, “Community detection in networks: A multidisciplinary review,” Journal of Network and Computer Applications, vol. 108, pp. 87–111, 2018.
  46. P. Doreian and A. Mrvar, “A partitioning approach to structural balance,” Social Networks, vol. 18, pp. 149–168, Apr. 1996.
  47. A. Hassan, A. Abu-Jbara, and D. Radev, “Extracting Signed Social Networks from Text,” in Workshop Proceedings of TextGraphs-7: Graph-based Methods for Natural Language Processing (I. Matveeva, A. Hassan, and G. Dias, eds.), (Jeju, Republic of Korea), pp. 6–14, Association for Computational Linguistics, July 2012.
  48. V. A. Traag and J. Bruggeman, “Community detection in networks with positive and negative links,” Physical Review E, vol. 80, p. 036115, Sept. 2009.
  49. M. J. Brusco and P. Doreian, “Partitioning signed networks using relocation heuristics, tabu search, and variable neighborhood search,” Social Networks, vol. 56, pp. 70–80, Jan. 2019.
  50. M. Ehsani and R. Mansouri, “BridgeCut: A new algorithm for balanced partitioning of signed networks,” preprint, In Review, Jan. 2023.
  51. F. Bonchi, E. Galimberti, A. Gionis, B. Ordozgoiti, and G. Ruffo, “Discovering polarized communities in signed networks,” in Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM ’19, (New York, NY, USA), pp. 961–970, Association for Computing Machinery, Nov. 2019.
  52. V. A. Traag, P. Doreian, and A. Mrvar, “Partitioning signed networks,” Mar. 2018.
  53. J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. W. De Luca, and S. Albayrak, “Spectral Analysis of Signed Graphs for Clustering, Prediction and Visualization,” in Proceedings of the 2010 SIAM International Conference on Data Mining (SDM), Proceedings, pp. 559–570, Society for Industrial and Applied Mathematics, Apr. 2010.
  54. Q. Zheng and D. Skillicorn, “Spectral Embedding of Signed Networks,” in Proceedings of the 2015 SIAM International Conference on Data Mining, pp. 55–63, Society for Industrial and Applied Mathematics, June 2015.
  55. K.-Y. Chiang, J. J. Whang, and I. S. Dhillon, “Scalable clustering of signed networks using balance normalized cut,” in Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM ’12, (New York, NY, USA), pp. 615–624, Association for Computing Machinery, Oct. 2012.
  56. A. Knyazev, “On spectral partitioning of signed graphs,” in 2018 Proceedings of the Seventh SIAM Workshop on Combinatorial Scientific Computing, pp. 11–22, SIAM, 2018.
  57. M. Cucuringu, P. Davies, A. Glielmo, and H. Tyagi, “SPONGE: A generalized eigenproblem for clustering signed networks,” in Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, pp. 1088–1098, PMLR, Apr. 2019.
  58. M. E. J. Newman and M. Girvan, “Finding and evaluating community structure in networks,” Physical Review E, vol. 69, p. 026113, Feb. 2004.
  59. Y. Li, J. Liu, and C. Liu, “A comparative analysis of evolutionary and memetic algorithms for community detection from signed social networks,” Soft Computing, vol. 18, pp. 329–348, Feb. 2014.
  60. S. Gómez, P. Jensen, and A. Arenas, “Analysis of community structure in networks of correlated data,” Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, vol. 80, p. 016114, July 2009.
  61. A. Amelio and C. Pizzuti, “Community mining in signed networks: a multiobjective approach,” in Proceedings of the 2013 IEEE/ACM international conference on advances in social networks analysis and mining, pp. 95–99, 2013.
  62. No. 4, 2013.
  63. J. Q. Jiang, “Stochastic block model and exploratory analysis in signed networks,” Physical Review E, vol. 91, no. 6, p. 062805, 2015.
  64. T. P. Peixoto, “Nonparametric weighted stochastic block models,” Physical Review E, vol. 97, no. 1, p. 012306, 2018.
  65. Y. Chen, X.-l. Wang, and B. Yuan, “Overlapping community detection in signed networks,” arXiv preprint arXiv:1310.4023, 2013.
  66. B. Yang, W. Cheung, and J. Liu, “Community Mining from Signed Social Networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 19, pp. 1333–1348, Oct. 2007.
  67. L.-Q. Kong and M.-L. Yang, “Improvement of clustering algorithm FEC for signed networks,” Journal of Computer Applications, vol. 31, no. 5, pp. 1395–1399, 2011.
  68. J. Wu, L. Zhang, Y. Li, and Y. Jiao, “Partition signed social networks via clustering dynamics,” Physica A: Statistical Mechanics and its Applications, vol. 443, pp. 568–582, Feb. 2016.
  69. S. A. Babul and R. Lambiotte, “SHEEP, a signed hamiltonian eigenvector embedding for proximity,” Communications Physics, vol. 7, no. 1, p. 8, 2024.
  70. A.-M. Kermarrec and A. Moin, “Energy models for drawing signed graphs,” 2011.
  71. J. Pougué-Biyong, A. Gupta, A. Haghighi, and A. El-Kishky, “Learning Stance Embeddings from Signed Social Graphs,” in Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, (Singapore Singapore), pp. 177–185, ACM, Feb. 2023.
  72. K. Garimella, G. D. F. Morales, A. Gionis, and M. Mathioudakis, “Quantifying controversy on social media,” ACM Transactions on Social Computing, vol. 1, pp. 3:1–3:27, Jan. 2018.
  73. S. Martin-Gutierrez, J. C. Losada, and R. M. Benito, “Multipolar social systems: Measuring polarization beyond dichotomous contexts,” Chaos, Solitons & Fractals, vol. 169, p. 113244, Apr. 2023.
  74. R. Singh and B. Adhikari, “Measuring the balance of signed networks and its application to sign prediction,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2017, p. 063302, June 2017.
  75. S.-H. Yang, A. J. Smola, B. Long, H. Zha, and Y. Chang, “Friend or frenemy? Predicting signed ties in social networks,” in Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’12, (New York, NY, USA), pp. 555–564, Association for Computing Machinery, Aug. 2012.
  76. M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathematical Journal, vol. 23, no. 2, pp. 298–305, 1973.
  77. U. von Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol. 17, pp. 395–416, Dec. 2007.
  78. D. L. Powers, “Graph partitioning by eigenvectors,” Linear Algebra and its Applications, vol. 101, pp. 121–133, 1988.
  79. Y. Liu, Z. Li, H. Xiong, X. Gao, and J. Wu, “Understanding of internal clustering validation measures,” in 2010 IEEE international conference on data mining, pp. 911–916, IEEE, 2010.
  80. M. Pereda and E. Estrada, “Visualization and machine learning analysis of complex networks in hyperspherical space,” Pattern Recognition, vol. 86, pp. 320–331, 2019.
  81. S. Fortunato and M. Barthélemy, “Resolution limit in community detection,” Proceedings of the National Academy of Sciences, vol. 104, pp. 36–41, Jan. 2007.
  82. E. Estrada, “The many facets of the estrada indices of graphs and networks,” SeMA Journal, vol. 79, no. 1, pp. 57–125, 2022.
  83. E. Estrada and M. Benzi, “Walk-based measure of balance in signed networks: Detecting lack of balance in social networks,” Physical Review E, vol. 90, no. 4, p. 042802, 2014.
  84. J. Gower, “Properties of euclidean and non-euclidean distance matrices,” Linear Algebra and its Applications, vol. 67, pp. 81–97, 1985.
  85. N. Krislock and H. Wolkowicz, Euclidean distance matrices and applications. Springer, 2012.
  86. E. Estrada, M. G. Sánchez-Lirola, and J. A. de la Peña, “Hyperspherical embedding of graphs and networks in communicability spaces,” Discrete Applied Mathematics, vol. 176, pp. 53–77, Oct. 2014.
  87. K. E. Read, “Cultures of the central highlands, new guinea,” Southwestern Journal of Anthropology, vol. 10, no. 1, pp. 1–43, 1954.
  88. A. Mead, “Review of the development of multidimensional scaling methods,” Journal of the Royal Statistical Society: Series D (The Statistician), vol. 41, no. 1, pp. 27–39, 1992.
  89. P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of cluster analysis,” Journal of computational and applied mathematics, vol. 20, pp. 53–65, 1987.
  90. J. H. Ward Jr, “Hierarchical grouping to optimize an objective function,” Journal of the American statistical association, vol. 58, no. 301, pp. 236–244, 1963.
  91. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
  92. S. Rinke, Latin America and the First World War. Cambridge University Press, 2017.
  93. N. Masuda, Z. M. Boyd, D. Garlaschelli, and P. J. Mucha, “Correlation networks: Interdisciplinary approaches beyond thresholding,” arXiv preprint arXiv:2311.09536, 2023.
  94. J. Sherman, “Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix,” Annals of mathematical statistics, vol. 20, no. 4, p. 621, 1949.
Citations (2)

Summary

We haven't generated a summary for this paper yet.