Renewal theorems in a periodic environment (2403.07439v1)
Abstract: We study a renewal problem within a periodic environment, departing from the classical renewal theory by relaxing the assumption of independent and identically distributed inter-arrival times. Instead, the conditional distribution of the next arrival time, given the current one, is governed by a periodic kernel, denoted as $H$. The periodicity property of $H$ is expressed as $\mathbb{P}(T_{k+1} > t ~ |~ T_k) = H(t, T_k)$, where $H(t+T,s+T) = H(t, s)$. For a fixed time $t$, we define $N_t$ as the count of events occurring up to time $t$. The focus is on two temporal aspects: $Y_t$, the time elapsed since the last event, and $X_t$, the time until the next event occurs, given by $Y_t = t - T_{N_t}$ and $X_t = T_{N_{t}+1} - t$. The study explores the long-term behavior of the distributions of $X_t$ and $Y_t$.
- S. Asmussen. Applied probability and queues., volume 51 of Appl. Math. (N. Y.). New York, NY: Springer, 2nd revised and extended ed. edition, 2003. ISBN 0-387-00211-1; 978-1-4419-1809-3. doi: 10.1007/b97236.
- Ergodic behavior of non-conservative semigroups via generalized Doeblin’s conditions. Acta Appl. Math., 166:29–72, 2020. ISSN 0167-8019. doi: 10.1007/s10440-019-00253-5.
- Hopf bifurcation in a mean-field model of spiking neurons. Electron. J. Probab., 26:40, 2021. ISSN 1083-6489. doi: 10.1214/21-EJP688. Id/No 121.
- O. L. V. Costa. Stationary distributions for piecewise-deterministic Markov processes. J. Appl. Probab., 27(1):60–73, 1990. ISSN 0021-9002. doi: 10.2307/3214595.
- D. R. Cox. Renewal theory. Methuen’s Monogr. Appl. Probab. Stat. London: Methuen & Co., 1962.
- M. Hairer and J. C. Mattingly. Yet another look at Harris’ ergodic theorem for Markov chains. In Seminar on stochastic analysis, random fields and applications VI. Centro Stefano Franscini, Ascona (Ticino), Switzerland, May 19–23, 2008., pages 109–117. Basel: Birkhäuser, 2011. ISBN 978-3-0348-0020-4; 978-3-0348-0021-1. doi: 10.1007/978-3-0348-0021-1_7.
- M. N. Islam. Periodic solutions of Volterra integral equations. Int. J. Math. Math. Sci., 11(4):781–792, 1988. ISSN 0161-1712. doi: 10.1155/S016117128800095X.
- General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. (9), 84(9):1235–1260, 2005. ISSN 0021-7824. doi: 10.1016/j.matpur.2005.04.001.
- H. R. Thieme. Renewal theorems for linear periodic Volterra integral equations. J. Integral Equations, 7:253–277, 1984. ISSN 0163-5549.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.